• Title/Summary/Keyword: Virus cultivation

Search Result 95, Processing Time 0.02 seconds

Reverse Transcription Polymerase Chain Reaction-based System for Simultaneous Detection of Multiple Lily-infecting Viruses

  • Kwon, Ji Yeon;Ryu, Ki Hyun;Choi, Sun Hee
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.338-343
    • /
    • 2013
  • A detection system based on a multiplex reverse transcription (RT) polymerase chain reaction (PCR) was developed to simultaneously identify multiple viruses in the lily plant. The most common viruses infecting lily plants are the cucumber mosaic virus (CMV), lily mottle virus (LMoV), lily symptomless virus (LSV). Leaf samples were collected at lily-cultivation facilities located in the Kangwon province of Korea and used to evaluate the detection system. Simplex and multiplex RT-PCR were performed using virus-specific primers to detect single- or mixed viral infections in lily plants. Our results demonstrate the selective detection of 3 different viruses (CMV, LMoV and LSV) by using specific primers as well as the potential of simultaneously detecting 2 or 3 different viruses in lily plants with mixed infections. Three sets of primers for each target virus, and one set of internal control primers were used to evaluate the detection system for efficiency, reliability, and reproducibility.

Effect of Cropping System on Disease Incidence by Soil-borne Bymovirus in Barley and on Density of the Vector, Polymyxa graminis (작부형태가 보리의 토양전염성 Bymovirus 발생과 매개균(Polymyxa graminis)의 밀도 변화에 미치는 영향)

  • Park, Jong-Chul;Noh, Tae-Hwan;Kim, Mi-Jung;Lee, Sang-Bok;Park, Chul-Soo;Kang, Chun-Sik;Lee, Jung-Joon;Kim, Tae-Soo
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • In this study, changes in virus disease occurrence and yield were monitored in conventional cropping system(rice-barley) and soybean-barley double cropping system in virus-prone area for 5 years. Also, changes in the density of Polymyxa graminis, a fungal vector, was investigated. In assay tests, mixed infection of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) was observed. Disease severity was in the range of 7~9 in conventional cropping system. In continuous cropping of soybean-barley and 3-yearfallow land, disease severity also was around 7. However, disease severity was reduced to medium level (5) when barley cultivation was paused for one or two years in soybean-barley cropping. When barley cultivation was paused for a year, the density of P. graminis, a fungal vector for BaYMV and BaMMV, reduced in barley root and soil. Similarly, barley growth was also enhanced by adopting fallow seasons. Compared with the fifth year of conventional cropping, the number of tillers per $m^2$ was increased by 158 when barley cultivation was paused for an year in soybean-barley cropping. When soybean and barley were cultivated continuously or complete fallow period was extended to three years, plant height and the number of tillers of barley were decreased. Yield components of barley in soybean-barley cropping were superior to those in rice-barley cropping. Compared with the fifth year of conventional cropping and soybean-barley cropping, culm length of barley was 1.3~2.3 cm higher and the number of tillers per $m^2$ was 36~90 higher when barley cultivation was paused for one or two years. However, those in continuous cropping of soybean-barley and 3-year-fallow land were lower compared with conventional cropping. Similarly, yield was increased when barley cultivation was paused for one or two years in the third, forth, and fifth years when compared with conventional cropping.

Survey of Cherry necrotic rusty mottle virus and Cherry green ring mottle virus incidence in Korea by Duplex RT-PCR

  • Lee, Seung-Yeol;Yea, Mi-Chi;Back, Chang-Gi;Choi, Kwang-Shik;Kang, In-Kyu;Lee, Su-Heon;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.445-449
    • /
    • 2014
  • The incidence of Cherry necrotic rusty mottle virus (CNRMV) and Cherry green ring mottle virus (CGRMV) have recently been occurred in Korea, posing a problem for sweet cherry cultivation. Since infected trees have symptomless leaves or ring-like spots on the pericarp, it is difficult to identify a viral infection. In this study, the incidence of CNRMV and CGRMV in sweet cherry in Gyeongbuk province was surveyed using a newly developed duplex reverse transcriptase polymerase chain reaction (RT-PCR) method that can detect both viruses in a single reaction. CNRMV and CGRMV co-infection rates were 29.6%, 53.6%, and 17.6%, respectively, in samples collected from three different sites (Daegu, Gyeongju and Gyeongsan) in Gyeongbuk province during 2012 and 2013. This duplex RT-PCR method offers a simple, rapid, and effective way of identifying CNRMV and CGRMV simultaneously in sweet cherry trees, which can aid in the management of viral infections that could undermine yield.

Life Cycle-Based Host Range Analysis for Tomato Spotted Wilt Virus in Korea

  • Kil, Eui-Joon;Chung, Young-Jae;Choi, Hong-Soo;Lee, Sukchan;Kim, Chang-Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.67-75
    • /
    • 2020
  • Tomato spotted wilt virus (TSWV) is one of the plant viruses transmitted by thrips and causes severe economic damage to various crops. From 2008 to 2011, to identify natural host species of TSWV in South Korea, weeds and crops were collected from 5 regions (Seosan, Yesan, Yeonggwang, Naju, and Suncheon) where TSWV occurred and were identified as 1,104 samples that belong to 144 species from 40 families. According to reverse transcription-polymerase chain reaction, TSWV was detected from 73 samples from 23 crop species, 5 of which belonged to family Solanaceae. Additionally, 42 weed species were confirmed as natural hosts of TSWV with three different life cycles, indicating that these weed species could play an important role as virus reservoirs during no cultivation periods of crops. This study provides up-to-date comprehensive information for TSWV natural hosts in South Korea.

Antiserum Preparation of Recombinant Sweet Potato Latent Virus-Lotus (SPLV-Lotus) Coat Protein and Application for Virus-Infected Lotus Plant Detection

  • He, Zhen;Dong, Tingting;Chen, Wen;Wang, Tielin;Gan, Haifeng;Li, LiangJun
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.651-657
    • /
    • 2020
  • Lotus is one of the most important aquatic vegetables in China. Previously, we detected sweet potato latent virus from lotus (SPLV-lotus) and found that it has highly significant sequence diversity with SPLV-sweet potato isolates (SPLV-sp). Here, we developed serological methods for the detection of SPLV-lotus in Chinese lotus cultivation areas. Based on the high sensitivity of SPLV-lotus coat protein antiserum, rapid, sensitive and large-scale diagnosis methods of enzyme-linked immunosorbent assay (ELISA) and dot blot in lotus planting area were developed. The established ELISA and dot blot diagnostic methods can be used to detect SPLV-lotus from samples successfully. And our results also showed that the SPLV-lotus and sweet potato isolates appeared clearly distinction in serology. Our study provides a high-throughput, sensitive, and rapid diagnostic method based on serology that can detect SPLV on lotus, which is suggested to be included in viral disease management approach due to its good detection level.

Evaluation of the Weeds around Capsicum annuum (CA) Cultivation Fields as Potential Habitats of CA-Infecting Viruses

  • Min-Kyung Choi
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.374-383
    • /
    • 2023
  • Capsicum annuum (CA) is grown outdoors across fields in Jeollabuk-do, South Korea. The weeds surrounding these fields were investigated regarding the infection of 11 viruses infecting CA during the year 2014-2018. In the reverse transcription polymerase chain reaction diagnosis, 546 out of 821 CA samples (66.5%) were infected by nine viruses, and 190 out of 918 weed samples (20.7%) were infected by eight viruses. Correlation analysis of the mutual influence of the viruses infecting CA and weeds during these 5 years showed that five viruses had significant positive correlations with the infection in both CA and weeds. Over the study period, the weeds infected by cucumber mosaic virus (CMV) in the previous year were positively correlated with the incidence of CMV infection in CA in the current year, although the correlation was lower for tomato spotted wilt virus (TSWV) compared to CMV. The CMV infection percent was 14.0% in summer annuals, 11.4% in perennials, and 7.8% in winter annuals. However, considering the overwintering period without CA, the infection percent was 5.2% higher in winter annuals and perennials than that in summer annuals, indicating that winter annual and perennial weeds served as the main habitats for insect vectors. The TSWV infection percent in weeds was 10.4% in summer annuals, 6.4% in winter annuals, and 6.2% in perennials. The weeds surrounding CA fields, acting as the intermediate hosts, were found to be the potent sources of infection, influencing the spread and diversity of CA-infecting viruses. The results of this study can contribute to prevent viral infection in agricultural fields.

Infection and Pathogenesis Mechanisms of Marek's Disease Virus (마렉병 바이러스 감염과 병원성 발현 기전)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2008
  • Like the other herpesviruses, the virion of MDV consists of an envelope, which surrounds an amorphous tegument. Within the tegument, and icosahedral capsid encloses a linear double-stranded DNA core. Although the genome structure of MDV indicates that it is an ${\alpha}-herpesvirus$ like herpes simplex and varicella-zoster viruses, biological properties indicate MDV is more akin to the ${\gamma}-herpesvirus$ group, which includes Epstein-Barr and Kaposi's sarcoma herpesviruses. These herpesviruses replicate lytically in lymphocytes, epithelial and fibroblastic cells, and persist in lymphoblastoid cells. MDV has a complex life cycle and uses two means of replication, productive and non-productive, to exist and propagate. The method of reproduction changes according to a defined pattern depending on changes in virus-cell interactions at different stages of the disease, and in different tissues. Productive (lytic) interactions involve active invasion and take-over of the host cell, resulting in the production of infectious progeny virions. However, some herpesviruses, including MDV, can also establish a non-productive (abortive) infection in certain cell types, resulting in production of cell-associated progeny virus. Non-productive interactions represent persistent infection, in which the viral genome is present but gene expression is limited, there is no structural or regulatory gene translation, no replication, no release of progeny virions and no cell death. Reactivation of the virus is rare, and usually the infectious virus can be re-isolated only after cultivation in vitro. MDV establishes latency in lymphoid cells, some of which are subsequently transformed. In this review article, recent knowledges of the pathogenesis mechanisms followed by MDV infection to sensitive cells and chickens are discussed precisely.

Incidence of Virus Diseases in Major Cultivated Areas of Watermelon and Melon in Chungbuk Province (충북지역 주산지 수박, 멜론에서의 바이러스 발생현황)

  • Jong-Woo Han;Young-Uk Park;Cheol-Ku Youn;Seok-Ho Lee;Taek-Goo Jeong;Hong-Soo Choi;Mi-Kyeong Kim
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.88-93
    • /
    • 2023
  • To investigate the incidence status of viruses in major cultivated areas of watermelon and melon in Chungbuk Province, samples were collected from 2020 to 2021 in vinyl greenhouse of Jincheon and Eumseong and examined for virus infection using reverse transcription polymerase chain reaction. Of the six viruses on watermelon that was analyzed in this study, watermelons were infected with cucumber mosaic virus (CMV), watermelon mosaic virus (WMV), cucumber green mottle mosaic virus (CGMMV), and cucurbit aphid-borne yellows virus (CABYV). The incidence rate of CMV was 20.9-35.0%, WMV 0.4-15.8%, CGMMV 1.6-38.5%, and CABYV was 3.5-3.7% from 2020 to 2021. But strangely, there were no incidence of zucchini yellow mosaic virus and cucurbit chlorotic yellows virus (CCYV) during investigation. From this result, we knew the major virus was CGMMV on watermelon in Chungbuk Province. Molecular diagnosis assays of the two melon viruses, showed that melons were infected with CABYV and CCYV from 2020 to 2021. The incidence rate of CABYV was 53.9-92.2% and CCYV was 2.7-20.8%. The incidence of CABYV was high in melon cultivation of Jincheon and Eumseong, Chungbuk. Afterwards, it is necessary to establish a control management strategy for reduce the incidence of CABYV. Furthermore, we must pay attention that of CCYV even if the incidence was low.

Beet western yellows virus (BWYV): Aspect of Outbreak and Survey, and First Complete Genome Sequence of a Korea Isolate of BWYV

  • Park, Chung Youl;Kim, Jeong-Sun;Lee, Hong Kyu;Oh, Jonghee;Lim, Seungmo;Moon, Jae Sun;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.276-284
    • /
    • 2018
  • In 2010, foliar symptoms were observed in the paprika leaves in Jinju city, Korea. Beet western yellows virus (BWYV) was identified in paprika by using the large-scale oligonucleotide chip assay. To investigate the occurrence of BWYV, a survey was performed on various crops, including paprika, from 2011 to 2014. Further, the presence of BWYV was consistently verified through literature survey from 2015 to 2017. BWYV infection has been identified in Solanaceae crops (bell pepper, hot pepper, and paprika), various weeds, and green peach aphids and it occurs on a nationwide scale. Cultivation using organic methods involved natural enemies and showed a high BWYV infection rate, which was more than that for conventional cultivation methods in greenhouse. The complete genome sequence of BWYV isolated from paprika was determined for the first time. The genome of the BWYV-Korea isolate consists of 5750 nucleotides and has six open reading frames. Sequence identity results showed maximum similarity between the BWYV-Korea isolate and the BWYV LS isolate (identity > 90%). This study is the first report of BWYV infecting paprika in Korea. The survey revealed that BWYV is naturalized in the domestic ecology of Korea.

The Incidence and Distribution of Viral Diseases in Pepper by Cultivation Types (시설 및 노지재배 고추의 바이러스병 발생과 분포)

  • Lee, Su-Heon;Lee, Jae-Bong;Kim, Sang-Mok;Choi, Hong-Soo;Park, Jin-Woo;Lee, Jun-Seong;Lee, Key-Woon;Moon, Jae-Sun
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.231-240
    • /
    • 2004
  • In the year of 2002 annual nationwide survey of virus diseases occurring in the pepper fields and greenhouses in Korea, the distribution and the incidence of viral diseases was investigated. The pepper samples from both greenhouses (155 samples) and open fields (227 samples) were collected and further analyzed to detect eleven different viruses by RT-PCR. The results indicate that no sample collected from both greenhouse and open field seems to be infected by TMV, RMV, PVY, AMV, and TSWV. On the other hand, CMV, BBWV2, PepMoV, PMMoV, TMGMV and ToMV are readily identified from greenhouse and open field samples by RT-PCR. The infection rates of the collected samples between greenhouse and open field are largely different. Comparing with 10% of virus-infected pepper samples grown in greenhouse, approximately one third of pepper samples collected from open field are infected. The mixed-infection rates in the virus-infected greenhouse and open field samples are 16% and 61%, respectively. The dominant virus occuring in greenhouse is PMMoV, indicating that virus-infected seed stocks and infected plant debris in the growing area may be important sources of inocula. On the other hand, both CMV and BBWV2 are dominant viruses in open field. This may indicate that the migration of viruliferous insect vectors into pepper fields may be the most important source of inoculum. Also, the survey shows that BBWV2 is newly immerging virus to be controlled in Korea. The discrepancies on the distribution and the occurrence of viral diseases between field and greenhouse may provide a fact that the accumulation and distribution of inoculum by successive cultivation and the migration of viruliferous vectors into growing areas are likely to be important factors to determine the incidence of viral diseases. Therefore, the further studies on epidemiology and the consideration of new breeding program of pepper are essential to minimize virus diseases.