• Title/Summary/Keyword: Virus Spread

Search Result 306, Processing Time 0.028 seconds

Aerodynamic Approaches for Estimation of Waste Disease Spread in Pig Farm through Airborne Contaminants (양돈장의 소모성질병 확산 분석을 위한 현장 모니터링 및 공기유동학적 분석)

  • Seo, Il-Hwan;Lee, In-Bok;Moon, Oun-Kyung;Kwon, Kyeong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • Pig chronic wasting disease, including porcine reproductive and respiratory syndrome (PRRS) and postweaning multisystemic wasting syndrome (PMWS), have made a continuous economic damage in pig farms. Airborne spread of livestock viruses are an important spread factor which is difficult to analyze due to invisible airflow and limitation of measurement. The objective of this study is to analyze airborne disease spread between buildings in the experimental pig farm by means of field experiment and computational fluid dynamics (CFD). The field experiments were conducted to capture airborne virus using air sampler and teflon filter along multi points in the experimental pig farm. The samples were tested in terms of virus detection resulting in positive reaction for PRRS and PCV-2 viruses, which can be a firm evidence of airborne virus spread. The CFD simulation model was developed by considering complex topography, wind conditions, building arrangement, and ventilation systems and was used to analyze airborne virus spread according to different wind conditions. The CFD computed result showed a possibility of airborne virus spread via livestock aerosol from infected pig house to neighboring pig houses according to wind directions. The CFD simulation technique is expected to provide significant data for estimating and making a counterplan against airborne disease spread.

Validation and Application of OpenFOAM for Prediction of Livestock Airborne Virus Spread (공기 중 축산질병 확산예측을 위한 오픈폼 도입 및 검증)

  • Roh, Hyun-Seok;Seo, Il-Hwan;Lee, In-Bok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.81-88
    • /
    • 2014
  • Accurate wind data is essential for predicting airborne spread of virus. OpenFOAM was used for computational fluid dynamics (CFD) simulation procedure which is under GNU GPL (General Public License). Using complex terrain, DEM (Digital Elevation Map) that was prepared from GIS information covering a research site is converted to a three dimensional surface mesh that is composed by quad and full hexahedral space meshes. Around this surface mesh, an extended computational domain volume was designed. Atmospheric flow boundary conditions were used at inlet and roughness height and was considered at terrain by using rough wall function. Two different wind conditions that was relatively stable during certain periods were compared in 3 different locations for validating the accuracy of the CFD computed solution. The result shows about 10 % of difference between the calculated result and measured data. This procedure can simulate a prediction of time-series data for airborne virus spread that can be used to make a web-based forecasting system of airborne virus spread.

A Inquiry of Tracer Gas for Analysis of Dispersion and Prediction of Infection Possibility according to Airborne Viral Contaminants (건축공간에서 공기 감염균 확산을 해석하기 위한 추적가스 고찰과 농도에 따른 감염 위험성 예측 연구)

  • Lim, Tae-Seob;Kang, Seung-Mo;Kim, Byung-Seon
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.3
    • /
    • pp.102-113
    • /
    • 2009
  • The SARS virus began to appear and spread in North America and Southeast Asia in the early 2000' s, infecting and harming many people. In the process of examining the causes for the virus, studies on the airborne SARS virus and the way it spread were carried out mainly in the medical field. In the field of architecture, studies were done on the diffusion of air pollutants in buildings using gases such as $CO_2$, $N_2O$, or $SF_6$, but research on virus diffusion was limited. There were also explanations of only the diffusion process without accurate information and discussion on virus characteristics. The aim of this study is to analyze the physical characteristics of airborne virus, consider the possibility of using coupled analysis model and tracer gas for analyzing virus diffusion in building space and, based on reports of how the infection spread in a hospital where SARS patients were discovered, analyze infection risk using tracer gas density and also diffusion patterns according to the location, shape, and volume of supply diffusers and exhaust grilles. This paper can provide standards and logical principles for evaluating various alternatives for making decisions on vertical or horizontal ward placement, air supply and exhaust installation and air volumes in medium or high story medical facilities.

Dissemination of plant viruses by fungi (Fungi에 의한 식물성 virus의 전파)

  • 이미순
    • Korean Journal of Microbiology
    • /
    • v.9 no.4
    • /
    • pp.179-188
    • /
    • 1971
  • There is a good evidence that tabacco necrosis virus, lettuce big vein virus, and tabacoo stunt virus are transmitted by Oplidium brassicae, although absolute proof in aspetic condition is lakcing. Some evidence suggests that polymyxa graminis may be involved in transmission of wheat mosaic virus. One report claims that Synchytrium endobioticum can transmit potato virus X. The cultivated mushroom, Agaricus bisporus, is known to act as a hose of a virus and is apparently involved in the spread of the virus.

  • PDF

Agent-Based COVID-19 Simulation Considering Dynamic Movement: Changes of Infections According to Detect Levels (동적 움직임 변화를 반영한 에이전트 기반 코로나-19 시뮬레이션: 접촉자 발견 수준에 따른 감염 변화)

  • Lee, Jongsung
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.43-54
    • /
    • 2021
  • Since COVID-19 (Severe acute respiratory syndrome coronavirus type 2, SARS-Cov-2) was first discovered at the end of 2019, it has spread rapidly around the world. This study introduces an agent-based simulation model representing COVID-19 spread in South Korea to investigate the effect of detect level (contact tracing) on the virus spread. To develop the model, related data are aggregated and probability distributions are inferred based on the data. The entire process of infection, quarantine, recovery, and death is schematically described and the interaction of people is modeled based on the traffic data. A composite logistic functions are utilized to represent the compliance of people to the government move control such as social distancing. To demonstrate to effect of detect level on the virus spread, detect level is changed from 0% to 100%. The results indicate active contact tracing inhibits the virus spread and the inhibitory effect increases geometrically as the detect level increases.

Foot-and-mouth disease: overview of motives of disease spread and efficacy of available vaccines

  • Saeed, Ali;Kanwal, Sehrish;Arshad, Memoona;Ali, Muhammad;Shaikh, Rehan Sadiq;Abubakar, Muhammad
    • Journal of Animal Science and Technology
    • /
    • v.57 no.4
    • /
    • pp.10.1-10.7
    • /
    • 2015
  • Control and prevention of foot and mouth disease (FMD) by vaccination remains unsatisfactory in endemic countries. Indeed, consistent and new FMD epidemics in previously disease-free countries have precipitated the need for a worldwide control strategy. Outbreaks in vaccinated animals require that a new and safe vaccine be developed against foot and mouth virus (FMDV). FMDV can be eradicated worldwide based on previous scientific information about its spread using existing and modern control strategies.

Studies on the Avian Infectious Bronchitis Virus I. Antbody Survey on Avian Infectious Bronchitis Virus (닭의 전염성 기관지염 바이러스에 관한 연구 1. 전염성 기관지염 바이러스의 항체에 대한 분포 조사)

  • Yoo, Tai Suck
    • Korean Journal of Veterinary Research
    • /
    • v.8 no.1
    • /
    • pp.24-30
    • /
    • 1968
  • From 1962 to 1968, serum samples were collected from fowls of six provinces in Korea. The investigator tested for serum neutralizing antibody against the Beaudette strain of intecfious bronchitis virus. Twenty(40 percent)serum samples out of fifty revealed a neutralization index of more than 30. Neuralizing antibodies of infectious bronchitis virus are widely spread among chickens in Korea. Intensive poultry farming zones, adult chickens have been neutralizing antibody of infectious bronchitis virus.

  • PDF

Prediction of potential spread areas of African swine fever virus through wild boars using Maxent model

  • Lim, Sang Jin;Namgung, Hun;Kim, Nam Hyung;Oh, Yeonsu;Park, Yung Chul
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.54-61
    • /
    • 2022
  • Background: In South Korea, African swine fever virus (ASFV) has spread among wild boars through Gangwon-do to Dangyang-gun, Chungcheongbuk-do on the southern border of Gangwon-do. To prevent the spread of ASFV to African swine fever (ASF)-free areas, it is necessary to identify areas with a high probability of finding ASFV-infected carcasses and to reduce the density of wild boars in those areas. In this study, we described the propagation trend of ASFV among wild boars, constructed the habitat suitability maps for ASFV-infected carcasses, and suggested areas with a high probability of finding ASFV-infected carcasses and an important route of ASFV transmission. Results: Despite the active quarantine policies in Korea to prevent the spread of ASFV through wild boars, there was no significant difference in the monthly average of number of ASFV-infected carcasses observed between 2020 and 2021. The ASFV-infected carcasses were found more in winter and spring (January to April). Since the first ASF outbreak in wild boars on October 2, 2019, the maximum width of ASFV-infected carcass distribution area was 222.7 km for about 26 months till November 20, 2021. The habitat suitability map, based on GPS coordinates of ASFV-infected wild boar carcasses, shows that highly detectable areas of ASFV-infected carcasses were sporadically dispersed in western and southwestern parts of Gangwon-do, and ranged from north to south of the province along the Baekdudaegan Mountains, whereas poorly detectable areas ranged along the north to the south in the middle parts of the province. Conclusions: Our suitability model, based on the GPS coordinates of ASFV-infected carcasses, identifies potential habitats where ASFV-infected carcasses are likely to be found and ponential routes where ASFV is likely to spread. Among ASF-free areas, the areas with high suitability predicted in this study should be given priority as survey areas to find ASFV-infected carcasses and hunting areas to reduce wild boar populations.

Prevent and Track the Spread of Highy Pathogenic Avian Influenza Virus using Big Data (빅데이터를 활용한 HPAI Virus 확산 예방 및 추적)

  • Choi, Dae-Woo;Lee, Won-Been;Song, Yu-Han;Kang, Tae-Hun;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.145-153
    • /
    • 2020
  • This study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and is based on artificial intelligence-based HPAI spread analysis and patterning. Highly Pathogenic Avian Influenza (HPAI) is coming from abroad through migratory birds, but it is not clear exactly how it spreads to farms. In addition, it is assumed that the main cause of the spread is the vehicle, but the main cause of the spread is not exactly known. However, it is necessary to analyze the relationship between the vehicles and the facilities at the farms where they occur, as the type of vehicles that visit the farms most frequently is between farms and facilities, such as livestock transportation and feed transportation. In this paper, based on the Korea Animal Health Integrated System (KAHIS) data provided by Animal and Plant Quarantine Agency, the main cause of HPAI virus transfer is to be confirmed between vehicles and facilities.

A Plant Breeder's View on H5N1

  • Kim, Soon-Kwon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • International conferences to block the spread of Avian bird flu occurred in Beijing, 2006 and others warned of the seriousness of the H5N1 strain. The meetings succeeded in generating billions of dollars from USA, EU and World Bank. Migratory birds seem to play a major role in the spread of the aggressive strain globally from Asia to Europe and Africa. Experiences of tolerance breeding of maize (Zea mays L.) for four decades against 20 biotic stresses suggest that the prime cause of the occurrence of H5N1 strain was due to the human beings' counter-efforts against nature. Excessive use of chemicals (spray and injection) in the commercial poultry farms had created high selection pressure on virus. The new strain had mutated for survival. Attempting to eliminate the virus by chemicals for 100% control is a dangerous way to control biotic stresses. This can create more aggressive strains. A solution would be to build up tolerability of the commercial animals against the virus. Improvement of poultry cage environments and respect for nature must be integrated. Potential foes must be watched.