• Title/Summary/Keyword: Virtual sensor

Search Result 488, Processing Time 0.022 seconds

Improvement of Frame Rate of Electro-Optical Sensor using Temporal Super Resolution based on Color Channel Extrapolation (채널별 색상정보 외삽법 기반 시간적 초해상도 기법을 활용한 전자광학 센서의 프레임률 향상 연구)

  • Noh, SangWoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.120-124
    • /
    • 2017
  • The temporal super resolution is a method for increasing the frame rate. Electro-optical sensors are used in various surveillance and reconnaissance weapons systems, and the spatial resolution and temporal resolution of the required electro-optical sensors vary according to the performance requirement of each weapon system. Because most image sensors capture images at 30~60 frames/second, it is necessary to increase the frame rate when the target moves and changes rapidly. This paper proposes a method to increase the frame rate using color channel extrapolation. Using a DMD, one frame of a general camera was adjusted to have different consecutive exposure times for each channel, and the captured image was converted to a single channel image with an increased frame rate. Using the optical flow method, a virtual channel image was generated for each channel, and a single channel image with an increased frame rate was converted to a color channel image. The performance of the proposed temporal super resolution method was confirmed by the simulation.

Development of the 3D Imaging System and Automatic Registration Algorithm for the Intelligent Excavation System (IES) (지능형 굴삭 시스템을 위한 모바일 3D 이미징 시스템 및 자동 정합 알고리즘의 개발)

  • Chae, Myung-Jin;Lee, Gyu-Won;Kim, Jung-Ryul;Park, Jae-Woo;Yoo, Hyun-Seok;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.136-145
    • /
    • 2009
  • The objective of the Intelligent Excavation System (IES) is to recognize the work environment and produce work plan and automatically control the excavator through integrating sensor and robot technologies. This paper discusses one of the core technologies of IES development project, development of 3D work environment modeling. 3D laser scanner is used for 3-dimensional mathematical model that can be visualized in virtual space in 3D. This paper describes (1) how the most appropriate 3D imaging system has been chosen; (2) the development of user interface and customization of the s/w to control the scanner for IES project; (3) the development of the mobile station for the scanner; (4) and the algorithm for the automatic registration of laser scan segments for IES project. The development system has been tested on the construction field and lessons learned and future development requirements are suggested.

Investigation of Building Extraction Methodologies within the Framework of Sensory Data

  • Seo, Su-Young
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.479-488
    • /
    • 2008
  • This paper performs investigation of the state-of-the-art approaches to building extraction in terms of their sensory input data and methodologies. For the last decades, there have been many types of sensory input data introduced into the mapping science and engineering field, which are considerably diverse in aspects of spatial resolution and data processing. With the cutting-edge technology in this field, accordingly, one of the key issues in GIS is to reconstruct three -dimensional virtual models of the real world to meet the requirements occurring in spatial applications such as urban design, disaster management, and civil works. Thus, this study investigates the strengths and weaknesses of previous approaches to automating building extraction with two categories - building detection and modeling and with sensor types categorized. The findings in this study can be utilized in enhancing automation algorithms and choosing suitable sensors, so that they can be optimized for a specific purpose.

  • PDF

Design and Implementation of Frontal-View Algorithm for Smartphone Gyroscopes (스마트폰 자이로센서를 이용한 Frontal-View 변환 알고리즘 설계 및 구현)

  • Cho, Dae-Kyun;Park, Seok-Cheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.199-206
    • /
    • 2012
  • Attempt to use as a marker of natural objects directly in the real world, but there is a way to use the accelerometer of the smartphone, to convert the Frontal-View virtual, because it asks only the pitch of the camera, from the side there is a drawback that can not be converted to images. The proposed algorithm, to obtain the rotation matrix of axis 3 pitch, roll, yaw, we set the reference point of the yaw of the target image. Then, to compensate for the rotation matrix to determine Myon'inji any floor, wall, the ceiling of the target image. Finally, to obtain the homography matrix for obtaining the Frontal-View to account for the difference between the gyro sensor coordinate system and image coordinate system, so we can get the Frontal-View from the captured images through the projection transformation was designed. Was tested to convert Frontal-View the picture was taken in an environment smartphone environment surrounding floor, walls and ceiling in order to evaluate the conversion program Frontal-View has been implemented, in this paper, design and The conversion algorithm implementation, it was confirmed that to convert a regular basis Frontal-View footage taken from multiple angles.

Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway (궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증)

  • Park, Hyeon-cheol;Noh, Myounggyu;Kang, Heung-Sik;Han, Hyung-Suk;Kim, Chang-Hyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.

Implementation of Real-time Recognition System for Continuous Korean Sign Language(KSL) mixed with Korean Manual Alphabet(KMA) (지문자를 포함한 연속된 한글 수화의 실시간 인식 시스템 구현)

  • Lee, Chan-Su;Kim, Jong-Sung;Park, Gyu-Tae;Jang, Won;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.76-87
    • /
    • 1998
  • This paper deals with a system which recognizes dynmic hand gestures, Korean Sign Language(KSL), mixed with static hand gesture, Korean Manual Alphabet(KMA), continuously. Recognition of continuous hand gestures is very difficult for lack of explicit tokens indicating beginning and ending of signs and for complexity of each gesture. In this paper, state automata is used for segmenting sequential signs into individual ones, and basic elements of KSL and KMA, which consist of 14 hand directions, 23 hand postures and 14 hand orientations are used for recognition of complex gestures under consideration of expandability. Using a pair of CyberGlove and Polhemus sensor, this system recognizes 131 Korean signs and 31 KMA's in real-time with recognition rate 94.3% for KSL excluding no recognition case and 96.7% for KMA.

  • PDF

A Study on a Seismic Detection Technology for High-speed Railway Considering Site Response Characteristics (성토 구간 지반 응답을 고려한 열차 내 지진 감지 기술 개발 연구)

  • Yoo, Mintaek;Moon, Jae Sang;Park, Byoungsun;Yoo, Byoung Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.41-56
    • /
    • 2020
  • For the rapid and accurate warning, the system requires not only the sufficient number of seismometers but also the appropriate detection technique of sensor data. Instead of installing new seismometers, on-board accelerometers of the train could be utilized as alternatives. However, the data from on-board accelerometers includes train vibrations and the response of embankment site by earthquake, which are different from earthquakes measured from the seismometer. This study suggests signal analysis technique to detect earthquake from the on-board accelerometer data. The virtual on-board accelerometer data including the response of embankment site, obtained from site response analysis method, has been constructed. The constructed data has been analyzed using short time Fourier transform (STFT) and wavelet transform (WT). STFT method provides better performance to detect long-period earthquake whereas WT method is more available to detect short-period earthquake.

Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images (단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출)

  • Lee, Tae-Yoon;Lim, Young-Jae;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.3-13
    • /
    • 2006
  • Extraction of man-made objects from high resolution satellite images has been studied by many researchers. In order to reconstruct accurate 3D building structures most of previous approaches assumed 3D information obtained by stereo analysis. For this, they need the process of sensor modeling, etc. We argue that a single image itself contains many clues of 3D information. The algorithm we propose projects virtual shadow on the image. When the shadow matches against the actual shadow, the height of a building can be determined. If the height of a building is determined, the algorithm draws vertical lines of sides of the building onto the building in the image. Then the roof boundary moves along vertical lines and the footprint of the building is extracted. The algorithm proposed can use the shadow cast onto the ground surface and onto facades of another building. This study compared the building heights determined by the algorithm proposed and those calculated by stereo analysis. As the results of verification, root mean square errors of building heights were about 1.5m.

  • PDF

A Study on Human-Robot Interface based on Imitative Learning using Computational Model of Mirror Neuron System (Mirror Neuron System 계산 모델을 이용한 모방학습 기반 인간-로봇 인터페이스에 관한 연구)

  • Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.565-570
    • /
    • 2013
  • The mirror neuron regions which are distributed in cortical area handled a functionality of intention recognition on the basis of imitative learning of an observed action which is acquired from visual-information of a goal-directed action. In this paper an automated intention recognition system is proposed by applying computational model of mirror neuron system to the human-robot interaction system. The computational model of mirror neuron system is designed by using dynamic neural networks which have model input which includes sequential feature vector set from the behaviors from the target object and actor and produce results as a form of motor data which can be used to perform the corresponding intentional action through the imitative learning and estimation procedures of the proposed computational model. The intention recognition framework is designed by a system which has a model input from KINECT sensor and has a model output by calculating the corresponding motor data within a virtual robot simulation environment on the basis of intention-related scenario with the limited experimental space and specified target object.

3D Brain-Endoscopy Using VRML and 2D CT images (VRML을 이용한 3차원 Brain-endoscopy와 2차원 단면 영상)

  • Kim, D.O.;Ahn, J.Y.;Lee, D.H.;Kim, N.K.;Kim, J.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.285-286
    • /
    • 1998
  • Virtual Brain-endoscopy is an effective method to detect lesion in brain. Brain is the most part of the human and is not easy part to operate so that reconstructing in 3D may be very helpful to doctors. In this paper, it is suggested that to increase the reliability, method of matching 3D object with the 2D CT slice. 3D Brain-endoscopy is reconstructed with 35 slices of 2D CT images. There is a plate in 3D brain-endoscopy so as to drag upward or downward to match the relevant 2D CT image. Relevant CT image guides the user to recognize the exact part he or she is investigating. VRML Script is used to make the change in images and PlaneSensor node is used to transmit the y coordinate value with the CT image. The result is test on the PC which has the following spec. 400MHz Clock-speed, 512MB ram, and FireGL 3000 3D accelerator is set up. The VRML file size is 3.83MB. There was no delay in controlling the 3D world and no collision in changing the CT images. This brain-endoscopy can be also put to practical use on medical education through internet.

  • PDF