• Title/Summary/Keyword: Virtual labs

Search Result 13, Processing Time 0.018 seconds

Information-Based Urban Regeneration for Smart Education Community (스마트 교육 커뮤니티 정보기반 도시재생)

  • Kimm, Woo-Young;Seo, Boong-Kyo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.13-20
    • /
    • 2018
  • This research is to analyze the public cases of information facilities in terms of central circulations in multi level volumes such as atrium or court which provide visual intervention between different spaces and physical connections such as bridges. Hunt Library design balances the understood pre-existing needs with the University's emerging needs to create a forward-thinking learning environment. While clearly a contemporary structure within a traditional context of the NCSU campus, the Hunt Library provides a positive platform for influencing its surroundings. Both technical and programmatic innovations are celebrated as part of the learning experience and provide a versatile and stimulating environment for students. Public library as open spaces connecting to an interactive social domain over communities can provide variety of learning environments, or technology based labs. There are many cases of the public information spaces with dynamic networks where participants can play their roles in physical space as well as in the intellectual stimulation. In the research, new public projects provide typologies of information spaces with user oriented media. The research is to address a creative transition between the reading space and the experimental links of the integration of state-of-the-art technology is highly visible in the building's design. The user-friendly browsing system that replaces the traditional browsing with the virtual shelves classified and archived by their form, is to reduce the storage space of the public library and it is to allow more space for collaborative learning. In addition to the intelligent robot of information storages, innovative features is the large-scale visualization space that supports team experiments to carry out collaborative online works and therefore the public library's various programs is to provide visitors with more efficient participatory environment.

Concept and Characteristics of Intelligent Science Lab (지능형 과학실의 개념과 특징)

  • Hong, Oksu;Kim, Kyoung Mi;Lee, Jae Young;Kim, Yool
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.177-184
    • /
    • 2022
  • This article aims to explain the concept and characteristics of the 'Intelligent Science Lab', which is being promoted nationwide in Korea since 2021. The Korean Ministry of Education creates a master plan containing a vision for science education every five years. The most recently announced '4th Master plan for science education (2020-2024)' emphasizes the policy of setting up an 'intelligent science lab' in all elementary and secondary schools as an online and offline space for scientific inquiry using advanced technologies, such as Internet of Things and Augmented and Virtual Reality. The 'Intelligent Science Lab' project is being pursued in two main directions: (1) developing an online platform named 'Intelligent Science Lab-ON' that supports science inquiry classes, and (2) building a science lab space in schools that encourages active student participation while utilizing the online platform. This article presents the key features of the 'Intelligent Science Lab-ON' and the characteristics of intelligent science lab spaces newly built in schools. Furthermore, it introduces inquiry-based science learning programs developed for intelligent science labs. These programs include scientific inquiry activities in which students generate and collect data ('data generation' type), utilize datasets provided by the online platform ('data utilization' type), or utilize open and public data sources ('open data source' type). The Intelligent Science Lab project is expected to not only encourage students to engage in scientific inquiry that solves individual and social problems based on real data, but also contribute to presenting a model of online and offline linked scientific inquiry lessons required in the post-COVID-19 era.

Conversion of Camera Lens Distortions between Photogrammetry and Computer Vision (사진측량과 컴퓨터비전 간의 카메라 렌즈왜곡 변환)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.267-277
    • /
    • 2019
  • Photogrammetry and computer vision are identical in determining the three-dimensional coordinates of images taken with a camera, but the two fields are not directly compatible with each other due to differences in camera lens distortion modeling methods and camera coordinate systems. In general, data processing of drone images is performed by bundle block adjustments using computer vision-based software, and then the plotting of the image is performed by photogrammetry-based software for mapping. In this case, we are faced with the problem of converting the model of camera lens distortions into the formula used in photogrammetry. Therefore, this study described the differences between the coordinate systems and lens distortion models used in photogrammetry and computer vision, and proposed a methodology for converting them. In order to verify the conversion formula of the camera lens distortion models, first, lens distortions were added to the virtual coordinates without lens distortions by using the computer vision-based lens distortion models. Then, the distortion coefficients were determined using photogrammetry-based lens distortion models, and the lens distortions were removed from the photo coordinates and compared with the virtual coordinates without the original distortions. The results showed that the root mean square distance was good within 0.5 pixels. In addition, epipolar images were generated to determine the accuracy by applying lens distortion coefficients for photogrammetry. The calculated root mean square error of y-parallax was found to be within 0.3 pixels.