• Title/Summary/Keyword: Virtual design model

Search Result 704, Processing Time 0.026 seconds

Virtual Fitting System Using Deep Learning Methodology: HR-VITON Based on Weight Sharing, Mixed Precison & Gradient Accumulation (딥러닝 의류 가상 합성 모델 연구: 가중치 공유 & 학습 최적화 기반 HR-VITON 기법 활용)

  • Lee, Hyun Sang;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.145-160
    • /
    • 2022
  • Purpose The purpose of this study is to develop a virtual try-on deep learning model that can efficiently learn front and back clothes images. It is expected that the application of virtual try-on clothing service in the fashion and textile industry field will be vitalization. Design/methodology/approach The data used in this study used 232,355 clothes and product images. The image data input to the model is divided into 5 categories: original clothing image and wearer image, clothing segmentation, wearer's body Densepose heatmap, wearer's clothing-agnosting. We advanced the HR-VITON model in the way of Mixed-Precison, Gradient Accumulation, and sharing model weights. Findings As a result of this study, we demonstrated that the weight-shared MP-GA HR-VITON model can efficiently learn front and back fashion images. As a result, this proposed model quantitatively improves the quality of the generated image compared to the existing technique, and natural fitting is possible in both front and back images. SSIM was 0.8385 and 0.9204 in CP-VTON and the proposed model, LPIPS 0.2133 and 0.0642, FID 74.5421 and 11.8463, and KID 0.064 and 0.006. Using the deep learning model of this study, it is possible to naturally fit one color clothes, but when there are complex pictures and logos as shown in <Figure 6>, an unnatural pattern occurred in the generated image. If it is advanced based on the transformer, this problem may also be improved.

Design and Control of a Wire-driven Haptic Device;HapticPen

  • Farahani, Hossein S.;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1662-1667
    • /
    • 2005
  • In this paper, analysis, design, control and prototype construction of a wearable wire-driven haptic interface called HapticPen is discussed. This device can be considered as a wire driven parallel mechanism which three wires are attached to a pen-tip. Wire tensions are provided utilizing three DC servo motors which are attached to a solid frame on the user's body. This device is designed as input as well as output device for a wearable PC. User can write letters or figures on a virtual plate in space. Pen-tip trajectory in space is calculated using motor encoders and force feedback resulting from contact between pen and virtual plate is provided for constraining the pen-tip motion onto the virtual plane that can be easily setup by arbitrary non-collinear three points in space. In this paper kinematic model, workspace analysis, application analysis, control and prototype construction of this device are presented. Preliminary experiments on handwriting in space show feasibility of the proposed device in wearable environments.

  • PDF

Machined Surface Prediction and Experimental Verification for Virtual Machining CAM System (실가공형 CAM 시스템의 구현을 위한 가공면 예측 및 실험검증)

  • 정대혁;서석환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.247-258
    • /
    • 1999
  • With the contemporary CAD/CAM system, where the tool path is generated and verified purely based on the geometric operation, geometric accuracy of the machined surface cannot be guaranteed dut to the cutting mechanics, meaning that the cutting mechanics should be incorporated in some fashion. In this paper, we incorporate the instantaneous cutting force and the tool deflection phenomena in predicting the machined surface for the finish-cut and milling operation. For the given NC dat including cutting conditions, the developed algorithm computes cutting force and deflection amount along the tool trajectory, and outputs the 3D graphic model of the machined surface together with error analysis. The validity and accuracy of the presented method has been tested by the actual cutting experiments. Experimental results and accuracy enhancement method together with implementing architecture of the VMCS (Virtual Machining CAM System) are discussed in the paper.

  • PDF

Simulation of Block Logistics at a Big Shipyard (대형 조선소의 블록 물류 시뮬레이션)

  • Song, Chang-Sub;Kang, Yong-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.374-381
    • /
    • 2009
  • To meet the soaring demand recently, South Korea big shipbuilders are examining two things. One is new investment in plant and equipment. The other is replacement of production resources. Considering plant & equipment investment and replacement of production resources, even if actual production ability would be enough, the real output could be affected by limitation of logistics with lack of analysis. As we set up big shipyard in virtual space, we could perform actual production by using confirm production plan in virtual space. We've analyzed the load of block stock, load of road and load of transporter for logistics effects are followed by production increase. This research is to determine the possible problems of those analyzed results and to present the resolution using the current layout. And then modified yard layout, we reanalyzed previous three logistics effects. This simulation model could help administrator to make rational decision for changing yard layout.

Development of a Geometric Error Analysis and Virtual Manufacturing System for Gantry-Type 5-Axis Machining Centers (문형 5축 머시닝센터의 기하학적 오차해석 및 가상가공 시스템 개발)

  • 윤태선;조재완;김석일;곽병만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.172-179
    • /
    • 1998
  • To quickly determine the effect of the substitute component on the machine's performance is very important in the design and manufacturing processes. And minimizing machine cost and maximizing machine quality mandate predictability of machine accuracy. In this study, in order to evaluate the effects of the component's geometric errors and dimensions on the machining accuracy of gantry-type 5-axis machining centers, a geometric error analysis and virtual manufacturing system are developed based on the mathematical model for the shape generation motion of machine tool considering the component's geometric errors and dimensions, the solid modeling techniques and so on.

  • PDF

Life Assessment of Automotive Electronic Part using Virtual Qualification (Virtual Qualification을 통한 자동차용 전장부품의 수명 평가)

  • Lee, Hae-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.143-146
    • /
    • 2005
  • In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

  • PDF

Generative AI as a Virtual Conversation Partner in Language Learning

  • Ji-Young Seo;Seon-Ah, Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.7-15
    • /
    • 2024
  • Despite a recent surge in multifaceted research on AI-integrated language learning, empirical studies in this area remain limited. This study adopts a Human-Generative AI parallel processing model to examine students' perceptions, asking 182 college students to independently construct knowledge and then compare their efforts with the results generated through in-classroom conversations with ChatGPT 3.5. In questionnaire responses, most students indicated that they found these activities useful and expressed a keen interest in learning various ways to utilize generative AI for language learning with instructor guidance. The findings confirm that ChatGPT's potential as a virtual conversation partner. Identifying specific reasons for the perceived usefulness of conversation activities and drawbacks of ChatGPT, this study emphasizes the importance of teachers staying informed about both the latest advances in technology and their limitations. We recommend that teachers endeavor to creatively design various classroom activities using AI technology.

A Study on the Pollutant Dispersion over a Mountain Valley Region (II) : Numerical Simulation (산악 계곡지형에서의 오염확산에 관한 연구(II) :수치해석)

  • Shim Woo-Sup;Kim Seogcheol;Yoo Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1060-1071
    • /
    • 2005
  • Passive gas dispersions over a 1/1000 scale terrain model at Eiffel type wind tunnel were reproduced by numerical simulation. Large eddy simulation was used to treat the sub-grid scale turbulences. The terrain features were represented by millions of point forces densely distributed over the solid surface using the virtual boundary method. The model simulations agreed very well with the experiments in a consistent fashion for all wind directions. The measured profiles of the wind speeds as well as the tracer gas concentrations were nicely simulated by the CFD model at most locations scattered over the model terrain. With scale factor adjusted and the thermal stratification effects incorporated, the CFD model was expected to provide reliable information on pollutant dispersions over the real complex terrains.

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu;Mengkun Li;Bowen Zou;Ming Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1966-1973
    • /
    • 2023
  • Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.

Kansei Comparison of Form-ratio between Cubic Model and Refrigerator

  • Nishino, Tatsuo;Nagamachi, Mitsuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.133-137
    • /
    • 2000
  • Form-ratio means the ratio of Height/Width/Depth in 3-dimensions. The golden ratio or golden section is included as one of the form-ratio. Kansei Engineering System has some basic design databases. Form-ratio and color are basic design elements and they are very important for designing various products in viewpoint of Kansei Engineering. The subjects evaluate the form-ratios of 3-dimensional cubes and virtual products (refrigerator) with SD-scale kansei words(feelings and images). The golden ration was evaluated as "not beautiful" in refrigerator. We compared with the kansei of cube model and virtual product, and obtained databases of the relationship between the form-ratio and kansei.

  • PDF