• 제목/요약/키워드: Virtual axis

검색결과 162건 처리시간 0.029초

Seamless Transition Strategy for Wide Speed-Range Sensorless IPMSM Drives with a Virtual Q-axis Inductance

  • Shen, Hanlin;Xu, Jinbang;Yu, Baiqiang;Tang, Qipeng;Chen, Bao;Lou, Chun;Qiao, Yu
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1224-1234
    • /
    • 2019
  • Hybrid rotor position estimation methods that integrate a fundamental model and high frequency (HF) signal injection are widely used for the wide speed-range sensorless control of interior permanent-magnet synchronous machines (IPMSMs). However, the direct transition of two different schemes may lead to system fluctuations or system instability since two estimated rotor positions based on two different schemes are always unequal due to the effects of parameter variations, system delays and inverter nonlinearities. In order to avoid these problems, a seamless transition strategy to define and construct a virtual q-axis inductance is proposed in this paper. With the proposed seamless transition strategy, an estimated rotor position based on a fundamental model is forced to track that based on HF signal injection before the transition by adjusting the constructed virtual q-axis inductance. Meanwhile, considering that the virtual q-axis inductance changes with rotor position estimation errors, a new observer with a two-phase phase-locked loop (TP-PLL) is developed to accurately obtain the virtual q-axis inductance online. Furthermore, IPMSM sensorless control with maximum torque per ampere (MTPA) operations can be tracked automatically by selecting the proper virtual q-axis inductance. Finally, experimental results obtained from an IPMSM demonstrate the feasibility of the proposed seamless transition strategy.

머리 착용형 6축 가속도계를 사용한 심탄도 심박수 측정 (Ballistocardiographical Heart Rate Measurement Using Head Mounted 6-axis Accelerometer)

  • 김진만;국중진
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.33-37
    • /
    • 2024
  • Recently, wearable virtual reality devices are widely used. These instruments include a 3-axis accelerometer. User's heart rate information in virtual reality contents can be useful for measuring user experience. In this paper, we propose a method to measure the heart rate through a 3-axis accelerometer based on the principle of ballistocardiography without additional sensors. The angular velocity was successively measured in a time series by the 3-axis accelerometer mounted to the head. The frequency of the maximum magnitude is determined as the heart rate through frequency transform and band pass filtering of the time series signal. For verification, the heart rate calculated from photoplethysmography sensors acquired at the same time was compared as ground-truth. In the virtual reality, the user's heart rate information can be extracted without additional heart rate sensor, and the emotional state and fatigue can be measured.

  • PDF

가상 환경 및 6축 모션 시뮬레이터를 이용한 무인차량 영상 안정화 장치 시험 (Test of Vision Stabilizer for Unmanned Vehicle Using Virtual Environment and 6 Axis Motion Simulator)

  • 김선우;기선옥;김성수
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.227-233
    • /
    • 2015
  • 본 논문에서는 가상현실 및 모션 시뮬레이터를 이용하여 무인차량용 영상 안정화 장치의 실내 시험환경을 구축하였다. 실제 주행 환경은 군용 탱크 시험을 위한 애버딘 시험장 범프 주행로의 가상 환경으로 대체하였다. 또한 무인 차량 모션은 모션 시뮬레이터를 이용하여 구현하였다. 가상 주행 환경은 모션 시뮬레이터 위에 설치된 영상안정화 장치의 앞에 구현하였다. 영상 안정화 장치의 카메라의 영상 및 카메라에 부착된 IMU 센서 데이터를 통해 안정화 성능을 확인하였다.

Optical System Design and Evaluation for an Augmented Reality Head-up Display Using Aberration and Parallax Analysis

  • Kim, Kum-Ho;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.660-671
    • /
    • 2021
  • We present a novel optical system for an augmented reality head-up display (AR HUD) with two virtual images at different conjugates by employing a confocal off-axis two-mirror and introducing the horopter circle. For a far virtual image with large asymmetrical aberrations, we initially obtain an off-axis two-mirror system corrected for these aberrations and compensated for the down angle by configuring its parameters to satisfy the confocal and Scheimpflug conditions, respectively. In addition, this system is designed to reduce the biocular parallax by matching Petzval surface into the longitudinal horopter circle in a near virtual image. This design approach enables us to easily balance the residual aberrations and biocular parallax when configuring the optical system with two different conjugates, which results in an AR HUD available for near and far virtual images together.

실험계획법과 유한 요소해석을 이용한 초정밀 대면적 미세 그루빙 머신의 변위 오차 예측 (Displacement Error Estimation of a High-Precision Large-Surface Micro-Grooving Machine Based on Experimental Design Method and Finite Element Analysis)

  • 이희범;이원재;김석일
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.703-713
    • /
    • 2011
  • In this study, to minimize trial and error in the design and manufacturing processes of a high-precision large-surface micro-grooving machine which is able to fabricate the molds for 42 inch LCD light guide panels, the effects of the structural deformation of the micro-grooving machine according to the positions of the X-axis, Y-axis and Z-axis feed systems were examined on the tool tip displacement errors associated with the machining accuracy. The virtual prototype (finite element model) of the micro-grooving machine was constructed to include the joint stiffnesses of the hydrostatic bearings, hydrostatic guideways and linear motors, and then the tool tip displacement errors were measured from the virtual prototype. Especially, to establish the prediction model of the tool tip displacement errors, which was constructed using the positions of the X-axis, Y-axis and Z-axis feed systems as independent variables, the response surface method based on the central composite design was introduced. The reliability of the prediction model was verified by the fact that the tool tip displacement errors obtained from the prediction model coincided well those measured from the virtual prototype. And the causes of the tool tip displacement errors were identified through the analysis of interactions between the positions of the X-axis, Y-axis and Z-axis feed systems.

Measurement of Focal Length for Off-axis Optical Systems

  • Choe, Se-woon;Ryu, Jaemyung
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.402-408
    • /
    • 2021
  • An off-axis system refers to an optical system in which the optical axis and normal vector at the vertex of each surface do not match. The most important specification in an optical system is its focal length. Among the various methods for measuring the focal length, the most suitable method for the off-axis system is the method that adopts magnification. However, head-mounted display (HMD) optics must be measured while considering the virtual image distance, which is not infinity owing to product characteristics. For the virtual image distance, a camera with a focusing function was used. By measuring HMD optics via this magnification method, the error generated in this measurement was 0.68% of the HMD's focal length, which is within the 1%-3% range of the conventionally permitted design error for the focal length allowed at the optical design stage. Therefore, it can be verified that the measurement accuracy of the method proposed in this study is sufficiently feasible in practice.

다기능 복합가공기 이송시스템의 가상시제품 개발 (Development of Virtual Prototype for Multi-Purpose Lathe Slide System)

  • 정상화;차경래;김상석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.556-556
    • /
    • 2000
  • In the multi-purpose lathe, the design of tilting turret slide system has an important and critical role to enhance the accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, the 3-axis slide system with tilting turret unit is researched with two approaches; The first is that 3-axis slide system is modeled and simulated using ADAMS software. The dynamic behavior of this system is visualized by data graphs and dynamic animations. The second is that the slide system is analyzed with the aspect of stress distribution. The slide system is modeled and displayed by PATRAN and analyzed by NASTRAN. The analysis of strain and stress distribution in the each node is prompted and visualized in the computer. The first step of virtual prototype which makes it possible to design economically and effectively is developed.

  • PDF

문형 5축 머시닝센터의 기하학적 오차해석 및 가상가공 시스템 개발 (Development of a Geometric Error Analysis and Virtual Manufacturing System for Gantry-Type 5-Axis Machining Centers)

  • 윤태선;조재완;김석일;곽병만
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.172-179
    • /
    • 1998
  • To quickly determine the effect of the substitute component on the machine's performance is very important in the design and manufacturing processes. And minimizing machine cost and maximizing machine quality mandate predictability of machine accuracy. In this study, in order to evaluate the effects of the component's geometric errors and dimensions on the machining accuracy of gantry-type 5-axis machining centers, a geometric error analysis and virtual manufacturing system are developed based on the mathematical model for the shape generation motion of machine tool considering the component's geometric errors and dimensions, the solid modeling techniques and so on.

  • PDF