• Title/Summary/Keyword: Virtual Sound Source

Search Result 56, Processing Time 0.023 seconds

Virtual Sound Localization algorithm for Surround Sound Systems (서라운드시스템을 위한 가상 음상정위 알고리즘)

  • Lee Sin-Lyul;Han Ki-Young;Lee Seung-Rae;Sung Koeng-Mo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.81-84
    • /
    • 2004
  • In this paper, we propose a virtual sound localization algorithm which improves the sound localization accuracy and sound color preservation for two channel and multi-channel surround speaker layouts. In conventional CPP laws, the sound direction is different from the panning angle and the sound color is different from real sound source especially when the speakers are spread out widely. To overcome this drawback, we design a virtual sound localization algorithm using directional psychoacoustic criteria (DPC) and sound color compensator (SCC). The analysis results show that in the case of the proposed system, the sound direction is the same as the panning angle in the audible frequency range and the sound color is less deviated from a real sound source than the conventional CPP law. In addition, its performance is verified by means of subjective tests using a real sound source.

  • PDF

Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance (능동 가상 임피던스를 이용한 이동 음원 추종 로봇의 장애물 회피)

  • Han, Jong-Ho;Park, Sook-Hee;Noh, Kyung-Wook;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.200-210
    • /
    • 2014
  • An active virtual impedance algorithm is newly proposed to track a sound source and to avoid obstacles while a mobile robot is following the sound source. The tracking velocity of a mobile robot to the sound source is determined by virtual repulsive and attraction forces to avoid obstacles and to follow the sound source, respectively. Active virtual impedance is defined as a function of distances and relative velocities to the sound source and obstacles from the mobile robot, which is used to generate the tracking velocity of the mobile robot. Conventional virtual impedance methods have fixed coefficients for the relative distances and velocities. However, in this research the coefficients are dynamically adjusted to elaborate the obstacle avoidance performance in multiple obstacle environments. The relative distances and velocities are obtained using a microphone array consisting of three microphones in a row. The geometrical relationships of the microphones are utilized to estimate the relative position and orientation of the sound source against the mobile robot which carries the microphone array. Effectiveness of the proposed algorithm has been demonstrated by real experiments.

Listener Auditory Perception Enhancement using Virtual Sound Source Design for 3D Auditory System

  • Kang, Cheol Yong;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • When a virtual sound source for 3D auditory system is reproduced by a linear loudspeaker array, listeners can perceive not only the direction of the source, but also its distance. Control over perceived distance has often been implemented via the adjustment of various acoustic parameters, such as loudness, spectrum change, and the direct-to-reverberant energy ratio; however, there is a neglected yet powerful cue to the distance of a nearby virtual sound source that can be manipulated for sources that are positioned away from the listener's median plane. This paper address the problem of generating binaural signals for moving sources in closed or in open environments. The proposed perceptual enhancement algorithm composed of three main parts is developed: propagation, reverberation and the effect of the head, torso and pinna. For propagation the effect of attenuation due to distance and molecular air-absorption is considered. Related to the interaction of sounds with the environment, especially in closed environments is reverberation. The effects of the head, torso and pinna on signals that arrive at the listener are also objectives of the consideration. The set of HRTF that have been used to simulate the virtual sound source environment for 3D auditory system. Special attention has been given to the modelling and interpolation of HRTFs for the generation of new transfer functions and definition of trajectories, definition of closed environment, etc. also be considered for their inclusion in the program to achieve realistic binaural renderings. The evaluation is implemented in MATLAB.

The Design and Study of Virtual Sound Field in Music Production

  • Wang, Yan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.83-91
    • /
    • 2017
  • In this paper, we propose a thorough solution for adjusting virtual sound field with different kinds of devices and software in preliminary procedure and late stage of music processing. The basic process of music production includes composing, arranging and recording at pre-production stage as well as sound mixing and mastering at post-production stage. At the initial stage of music creation, it should be checked whether the design of virtual sound field, the choice of the tone and the instrument used in the arrangement match the virtual sound field required for the final work. In later recording, mixing and mastering, elaborate adjustments should be done to the virtual sound field. This study also analyzed how to apply the parameter of the effectors to the design and adjustment of the virtual sound field, making it the source of our creation.

Sound Quality Evaluation for Laundry Noise by a Virtual Laundry Noise Considering the Effect of Various Noise Sources in a Drum Washing Machine (소음원의 영향이 고려된 가상 세탁음 제작을 통한 드럼 세탁기의 음질 인덱스 구축)

  • Jeong, Jae-Eun;Yang, In-Hyung;Fawazi, Noor;Jeong, Un-Chang;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.564-573
    • /
    • 2012
  • The objective of this study is to determine the effect for the sound quality according to the noise source and to build the sound quality index of the laundry noise. In order to compare laundry noise among the influence of noise sources, we made virtual laundry noises by synthesizing an actual laundry noise and each noise source such as a dropping noise, water noise, motor noise and circulation pump noise. We conducted a listening test by customers using virtual laundry noises. As a result of listening test, we found that the dropping noise has a decisive effect on the sound quality of the laundry noise. We conducted the multi regression analysis of sound quality for the laundry noise using the statistical data processing. It is verified to the reliability of the multi regression index by comparison with listening results and index results of other actual laundry noises. This study is expected to provide a guide line for improvement of the laundry noise.

Amplitude Panning Algorithm for Virtual Sound Source Rendering in the Multichannel Loudspeaker System (다채널 스피커 환경에서 가상 음원을 생성하기 위한 레벨 패닝 알고리즘)

  • Jeon, Se-Woon;Park, Young-Cheol;Lee, Seok-Pil;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.197-206
    • /
    • 2011
  • In this paper, we proposes the virtual sound source panning algorithm in the multichannel system. Recently, High-definition (HD) and Ultrahigh-definition (UHD) video formats are accepted for the multimedia applications and they provide the high-quality resolution pixels and the wider view angle. The audio format also needs to generate the wider sound field and more immersive sound effects. However, the conventional stereo system cannot satisfy the desired sound quality in the latest multimedia system. Therefore, the various multichannel systems that can make more improved sound field generation are proposed. In the mutichannel system, the conventional panning algorithms have acoustic problems about directivity and timbre of the virtual sound source. To solve these problems in the arbitrary positioned multichannel loudspeaker system, we proposed the virtual sound source panning algorithm using multiple vectors base nonnegative amplitude panning gains. The proposed algorithm can be easily controlled by the gain control function to generate an accurate localization of the virtual sound source and also it is available for the both symmetric and asymmetric loudspeakers format. Its performance of sound localization is evaluated by subjective tests comparing with conventional amplitude panning algorithms, e.g. VBAP and MDAP, in the symmetric and asymmetric formats.

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

Interactive sound experience interface based on virtual concert hall (가상 콘서트홀 기반의 인터랙티브 음향 체험 인터페이스)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 2017
  • In this paper, we propose an interface for interactive sound experience in the virtual concert hall. The proposed interface consists of two systems, called 'virtual acoustic position' and 'virtual active listening'. To provide these systems, we applied an artificial reverberation algorithm, multi-channel source separation and head-related transfer function. The proposed interface was implemented by using Unity. The interface provides the virtual concert hall to user through Oculus Rift, one of the virtual reality headsets. Moreover, we used Leap Motion as a control device to allow a user experience the system with free-hand. And user can experience the sound of the system through headphones.

A Range Dependent Structural HRTF Model for 3-D Sound Generation in Virtual Environments (가상현실 환경에서의 3차원 사운드 생성을 위한 거리 변화에 따른 구조적 머리전달함수 모델)

  • Lee, Young-Han;Kim, Hong-Kook
    • MALSORI
    • /
    • no.59
    • /
    • pp.89-99
    • /
    • 2006
  • This paper proposes a new structural head-related transfer function(HRTF) model to produce sounds in a virtual environment. The proposed HRTF model generates 3-D sounds by using a head model, a pinna model and the proposed distance model for azimuth, elevation, and distance that are three aspects for 3-D sounds, respectively. In particular, the proposed distance model consists of level normalization block distal region model, and proximal region model. To evaluate the performance of the proposed model, we setup an experimental procedure that each listener identifies a distance of 3-D sound sources that are generated by the proposed method with a predefined distance. It is shown from the tests that the proposed model provides an average distance error of $0.13{\sim}0.31$ meter when the sound source is generated as if it is 0.5 meter $\sim$ 2 meters apart from the listeners. This result is comparable to the average distance error of the human listening for the actual sound source.

  • PDF