• Title/Summary/Keyword: Virtual Path Method

Search Result 159, Processing Time 0.036 seconds

A Path Generation Method for a Autonomous Mobile Robot based on a Virtual Elastic Force (가상 탄성력을 이용한 자율이동로봇 경로생성 방법)

  • Kwon, Young-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • This paper describes a global path planning method and path optimization algorithm for autonomous mobile robot based on the virtual elastic force in a grid map environment. A goal of a path planning is information for a robot to go its goal point from start point by a effective way. The AStar algorithm is a well-known method for a grid based path planning. This paper suggest a path optimization method by a virtual elastic force and compare the algorithm with a orignal AStar method. The virtual elastic force makes a shorter and smoother path. It is a profitable algorithm to optimize a path in a grid environment.

Following Path using Motion Parameters for Virtual Characters

  • Baek, Seong-Min;Jeong, Il-Kwon;Lee, In-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1621-1624
    • /
    • 2003
  • This paper presents a new method that generates a path that has no collision with the obstacles or the characters by using the three motion parameters, and automatically creates natural motions of characters that are confined to the path. Our method consists of three parameters: the joint information parameter, the behavior information parameter, and the environment information parameter. The joint information parameters are extracted from the joint angle data of the character and this information is used when creating a path following motion by finding the relation-function of the parameters on each joint. A user can set the behavior information parameter such as velocity, status, and preference and this information is used for creating different paths, motions, and collision avoidance patterns. A user can create the virtual environment such as road and obstacle, also. The environment is stored as environment information parameters to be used later in generating a path without collision. The path is generated using Hermit-curve and each control point is set at important places.

  • PDF

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

Visibility-based Automatic Path Generation Method for Virtual Colonoscopy (가상 대장내시경을 위한 가시성을 이용한 자동 경로 생성법)

  • Lee Jeongjin;Kang Moon Koo;Cho Myoung Su;Shin Yeong Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.10
    • /
    • pp.530-540
    • /
    • 2005
  • Virtual colonoscopy is an easy and fast method to reconstruct the shape of colon and diagnose tumors inside the colon based on computed tomography images. This is a non-invasive method, which resolves weak points of previous invasive methods. The path for virtual colonoscopy should be generated rapidly and accurately for clinical examination. However, previous methods are computationally expensive because the data structure such as distance map should be constructed in the preprocessing and positions of all the points of the path needs to be calculated. In this paper, we propose the automatic path generation method based on visibility to decrease path generation time. The proposed method does not require preprocessing and generates small number of control points representing the Path instead of all points to generate the path rapidly. Also, our method generates the path based on visibility so that a virtual camera moves smoothly and a comfortable and accurate path is calculated for virtual navigation. Also, our method can be used for general virtual navigation of various kinds of pipes.

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

Geometric Path Tracking and Obstacle Avoidance Methods for an Autonomous Navigation of Nonholonomic Mobile Robot (비홀로노믹 이동로봇의 자율주행을 위한 기하학적 경로 추종 및 장애물 회피 방법)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.771-779
    • /
    • 2010
  • This paper presents a method that integrates the geometric path tracking and the obstacle avoidance for nonholonomic mobile robot. The mobile robot follows the path by moving through the turning radius given from the pure pursuit method which is the one of the geometric path tracking methods. And the obstacle generates the obstacle potential, from this potential, the virtual force is obtained. Therefore, the turning radius for avoiding the obstacle is calculated by proportional to the virtual force. By integrating the turning radius for avoiding the obstacle and the turning radius for following the path, the mobile robot follows the path and avoids the obstacle simultaneously. The effectiveness of the proposed method is verified through the real experiments for path tracking only, static obstacle avoidance, dynamic obstacle avoidance.

Semi-3D Path Planning using Virtual Tangential Vector and Fuzzy Control (Virtual Tangential Vector와 퍼지 제어를 이용한 준 3차원 경로계획)

  • Kwak, Kyung-Woon;Jeong, Hae-Kwan;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • In this paper, a hybrid semi-3D path planning algorithm combining Virtual Tangential Vector(VTV) and fuzzy control is proposed. 3D dynamic environmental factors are reflected to the 2D path planning model, VTV. As a result, the robot can control direction from 2D path planning algorithm VTV and speed as well depending on the fuzzy inputs such as the distance between the robot and obstacle, roughness and slope. Performances and feasibilities of the suggested method are demonstrated by using Matlab simulations. Simulation results show that fuzzy rules and obstacle avoidance methods are working properly toward virtual 3D environments. The proposed hybrid semi-3D path planning is expected to be well applicable to a real life environment, considering its simplicity and realistic nature of the dynamic factors included.

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

Manipulator Path Planning Using Collision Detection Function in Virtual Environment (가상환경에서의 충돌감지기능을 이용한 조작기 경로계획)

  • 이종열;김성현;송태길;정재후;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1651-1654
    • /
    • 2003
  • The process equipment for handling high level radioactive materials, such as spent nuclear fuel, is operated within a sealed facility, called a hot cell, due to high radioactivity. Thus, this equipment should be maintained and repaired by remotely operated manipulator. In this study, to carry out the sale and effective maintenance of the process equipment installed in the hot cell by a servo type manipulator, a collision free motion planning method of the manipulator using virtual prototyping technology is suggested. To do this, the parts are modelled in 3-D graphics, assembled, and kinematics are assigned and the virtual workcell is implemented in the graphical environment which is the same as the real environment. The method proposed in this paper is to find the optimal path of the manipulator using the function of the collision detection in the graphic simulator. The proposed path planning method and this graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhancing the reliability of the spent fuel management.

  • PDF

A Study on Robot OLP Compensation Based on Image Based Visual Servoing in the Virtual Environment (가상 환경에서의 영상 기반 시각 서보잉을 통한 로봇 OLP 보상)

  • Shin Chan-Bai;Lee Jeh-Woon;Kim Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • It is necessary to improve the exactness and adaptation of the working environment for the intelligent robot system. The vision sensor have been studied for a long time at this points. However, it has many processes and difficulties for the real usages. This paper proposes a visual servoing in the virtual environment to support OLP(Off-Line-Programming) path compensation and supplement the problem of complexity of the old kinematical calibration. Initial robot path could be compensated by pixel differences between real and virtual image. This method removes the varies calibrations and 3D reconstruction process in real working space. To show the validity of the proposed approach, virtual space servoing with stereo camera is carried out with WTK and openGL library for a KUKA-6R manipulator and updated real robot path.