• Title/Summary/Keyword: Virtual Map

Search Result 362, Processing Time 0.016 seconds

A Study of 'Hear Me Later' VR Content Production to Improve the Perception of the Visually-Impaired (시각 장애인에 대한 인식 개선을 위한 'Hear me later' VR 콘텐츠 제작 연구)

  • Kang, YeWon;Cho, WonA;Hong, SeungA;Lee, KiHan;Ko, Hyeyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.99-109
    • /
    • 2020
  • This study was conducted to improve the education method for improving perception awareness of the visually-impaired. 'Hear me later' was designed and implemented based on VR content that allows the visually-impaired experience in the eyes and environment. The main target is from middle and high school students to adolescents in their twenties. It is consisted of a student, the user's daily life with waking up at home in the morning, going to school, taking classes at school, and disembarking home late in the dark. In addition, 10 quests are placed on each map to induce users' participation and activity. These quests are a daily activity for non-disabled people, but it is an activity to experience uncomfortable activity for visually impaired people. In order to verify the effect of 'Hear me later', 8 participants in their early teens to early 20s' perception of visually impaired people was measured through pre and post evaluation of VR contents experience. In order to verify the effect of'Hear me later', 8 participants in their early teens to early 20s' perception of visually impaired people was measured through pre-post evaluation of VR experiences. As a result, it was found that in the post-evaluation of VR contents experience, the perception of the visually impaired was increased by 30% compared to the pre-evaluation. In particular, misunderstandings and changes in prejudice toward the visually impaired were remarkable. Through this study, the possibility of a VR-based disability experience education program that can freely construct space-time and maximize the experience was verified. In addition, it laid the foundation to expand it to various fields of improvement of the disabled.

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.