• Title/Summary/Keyword: Virtual Engineering

Search Result 4,418, Processing Time 0.036 seconds

Survey on the virtual commissioning of manufacturing systems

  • Lee, Chi G.;Park, Sang C.
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • This paper reviews and identifies issues in the application of virtual commissioning technology for automated manufacturing systems. While the real commissioning of a manufacturing system involves a real plant system and a real controller, the virtual commissioning deals with a virtual plant model and a real controller. The expected benefits of virtual commissioning are the reduction of debugging and correction efforts during the subsequent real commissioning stage. However, it requires a virtual plant model and hence still requires significant amount time and efforts. Two main issues are identified, the physical model construction of a virtual device, and the logical model construction of a virtual device. This paper reviews the current literature related to the two issues and proposes future research directions to achieve the full utilization of virtual commissioning technology.

A Study on Factory Review Using Virtual Reality Model based on P3R Information (P3R 정보 기반의 가상현실 모델을 이용한 공장 품평에 관한 연구)

  • Lee, Ju-Yeon;Choi, Sang-Su;Park, Yang-Ho;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.343-353
    • /
    • 2010
  • Time to market and cost-efficient production are some of the challenge that manufacturing industries face. Modern methods of engineering can't help such organizations attain competitive advantage. To help these situations, MEMPHIS (Middleware for Exchanging Machinery and Product Data in Highly Immersive Systems) was introduced as an approach that enables VE (Virtual Engineering) and links engineering applications with VR (Virtual Reality) solutions. Thus an environment is provided to implement virtual design reviews and enable the application of virtual prototyping methods. However MEMPHIS could just handle Product data for virtual design review and simulation. In this paper, we newly define and develop the extended MEMPHIS that enables virtual manufacturing with Process, Resource and Plant data as well as Product data.

Virtual Human Authoring ToolKit for a Senior Citizen Living Alone (독거노인용 가상 휴먼 제작 툴킷)

  • Shin, Eunji;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1245-1248
    • /
    • 2020
  • Elderly people living alone need smart care for independent living. Recent advances in artificial intelligence have allowed for easier interaction by a computer-controlled virtual human. This technology can realize services such as medicine intake guide for the elderly living alone. In this paper, we suggest an intelligent virtual human and present our virtual human toolkit for controlling virtual humans for a senior citizen living alone. To make the virtual human motion, we suggest our authoring toolkit to map gestures, emotions, voices of virtual humans. The toolkit configured to create virtual human interactions allows the response of a suitable virtual human with facial expressions, gestures, and voice.

Hierarchical Constructions of Digital Virtual Factory and its Management (디지털 가상공장의 계층적 구축과 운영에 관한 연구)

  • Kim Yu-Seok;Noh Sang-Do;Hah Sang-Dong;Shin Jong-Gye
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.960-964
    • /
    • 2005
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital models representing the physical and logical schema and the behavior of real manufacturing systems including products, process, manufacturing resources and plants. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we constructed a sophisticated digital virtual factory of the shipbuilding company's section steel shop by 3-D CAD and virtual manufacturing simulation. This digital virtual factory can be applied for diverse engineering activities in design, manufacturing and control of the real factory.

  • PDF

Virtual Manufacturing for an Automotive Company(VII) : Construction and Application of a Virtual Press Shop (자동차 가상생산 기술 적용(VII) : 프레스 디지털 가상공장의 구축과 활용)

  • Kuk, Seung-Ho;Lee, Sang-Seok;So, Soon-Il;Noh, Sang-Do;Kim, H.S.;Shim, K.B.;Kim, J.Y.
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.322-332
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital model representing the physical and logical schema and the behavior of real manufacturing system, and it includes product, resources, processes and plant. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated digital virtual factory of a Korean automotive company's press shop. For efficient constructions of a digital virtual factory useful to kinematic simulations and visualizations, we analyzed entire business process and detailed activities of press engineering. Also, we evaluated geometries, structures, characteristics and motions of a plant and machines in press shop. The geometric model and related data of a virtual press shop are built and managed by a modeling standard defined in this paper. The virtual manufacturing simulation of press machines is conducted to evaluate kinematic motions, cycle time and locations of components using geometric models and related data. It's for interference checks and productivity improvements. We expect that this virtual press shop helps us to achieve great savings in time and cost in many manufacturing preparation activities in the new car development process of automotive companies.

An method for building 2D virtual environment for a remote controlled mobile robot

  • Kim, Woo-Kyoung;Hyun, Woong-Keun;Park, Jea-Yong;Yoon, In-Mo;Jung, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1430-1434
    • /
    • 2004
  • Recently, Virtual reality parts is applied in various fields of industry. In this paper we developed basic components for virtual robot control system interfaced with real environment. For this, a real robot with virtual interface module is developed and virtual robot of similar image with real robot is created by putting on 3D graphic texture to the real robot. To build an unknown environment to be linked with virtual environment, we proposed a hough transformation based algorithm. Our proposed algorithm consists of navigation module by using fuzzy engine and map building module. Experiments using a developed robot illustrate the method.

  • PDF

Angular Effect of Virtual Vertices Inserted to Treat The Boundary Edges on an Infinite Conducting Surface

  • Hwang, Ji-Hwan;Kweon, Soon-Koo;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • This study presents the angular effects of virtual vertices inserted for effective treatment of the boundary edge laid on an infinite conducting surface in a half-space scattering problem. We investigated the angular effects of virtual vertices by first computing the radar cross section (RCS) of a specific scatterer; i.e., a tilted conducting plate in contact with the ground surface, by inserting the virtual vertex in half-space. Here, the electric field integral equation is used to solve this problem with various virtual vertex angles (${\theta}_{\nu}$) and conducting plate inclination angles (${\theta}_r$) ranging from $0^{\circ}$ to $180^{\circ}$. The effects of the angles ${\theta}_{\nu}$ and ${\theta}_r$ on the RCS computation are clearly shown with numerical results with and without the virtual vertices in free- and half-spaces.

Requirement Analysis and Conceptual Design for a Cybrid Virtual Plant System (Cybrid 가상플랜트 시스템 요구사항 분석과 개념적 설계)

  • Lee, Jae Hyun;Suh, Hyo Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.401-411
    • /
    • 2015
  • Cybrid virtual plant concept is defined as a cyber plant mimicking a physical plant by using plant engineering data and sensor data coming from sensors attached to facilities of the physical plant. Cybrid virtual plant is a new concept for plant industry so that plant managers and operators' requirements need to be captured for systematic application of the concept to the plant industry. The paper proposed an architecture of the cybrid virtual plant, and provided requirement analysis results for a specific plant company. A database, named smart-cube repository, for the proposed cybrid virtual plant is also proposed and its conceptual data structure is described.

Virtual Prototyping of Area-Based Fast Image Stitching Algorithm

  • Mudragada, Lakshmi Kalyani;Lee, Kye-Shin;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • This work presents a virtual prototyping design approach for an area-based image stitching hardware. The virtual hardware obtained from virtual prototyping is equivalent to the conceptual algorithm, yet the conceptual blocks are linked to the actual circuit components including the memory, logic gates, and arithmetic units. Through the proposed method, the overall structure, size, and computation speed of the actual hardware can be estimated in the early design stage. As a result, the optimized virtual hardware facilitates the hardware implementation by eliminating trail design and redundant simulation steps to optimize the hardware performance. In order to verify the feasibility of the proposed method, the virtual hardware of an image stitching platform has been realized, where it required 10,522,368 clock cycles to stitch two $1280{\times}1024$ sized images. Furthermore, with a clock frequency of 250MHz, the estimated computation time of the proposed virtual hardware is 0.877sec, which is 10x faster than the software-based image stitch platform using MATLAB.