• Title/Summary/Keyword: Virology

Search Result 423, Processing Time 0.03 seconds

Nucleocapsid Amino Acids 211 to 254, in Particular, Tetrad Glutamines, are Essential for the Interaction Between the Nucleocapsid and Membrane Proteins of SARS-Associated Coronavirus

  • Fang, Xiaonan;Ye, Lin-Bai;Zhang, Yijuan;Li, Baozong;Li, Shanshan;Kong, Lingbao;Wang, Yuhua;Zheng, Hong;Wang, Wei;Wu, Zhenghui
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.577-580
    • /
    • 2006
  • GST pull-down assays were used to characterize the SARS-CoV membrane (M) and nucleocapsid (N) interaction, and it was found that the amino acids 211-254 of N protein were essential for this interaction. When tetrad glutamines (Q) were replaced with glutamic acids (E) at positions of 240-243 of the N protein, the interaction was disrupted.

Biochemical Characterization of Exoribonuclease Encoded by SARS Coronavirus

  • Chen, Ping;Jiang, Miao;Hu, Tao;Liu, Qingzhen;Chen, Xiaojiang S.;Guo, Deyin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.649-655
    • /
    • 2007
  • The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but failed to digest the RNA substrate that is modified with fluorescein group at the 3'-hydroxyl group, suggesting a 3'-to-5' exoribonuclease activity. The exoribonuclease activity requires $Mg^{2+}$ as a cofactor. Isothermal titration calorimetry (ITC) analysis indicated a two-metal binding mode for divalent cations by nsp14. Endogenous tryptophan fluorescence and circular dichroism (CD) spectra measurements showed that there was a structural change of nsp14 when binding with metal ions. We propose that the conformational change induced by metal ions may be a prerequisite for catalytic activity by correctly positioning the side chains of the residues located in the active site of the enzyme.