• 제목/요약/키워드: Viral host

Search Result 300, Processing Time 0.023 seconds

Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops (바이러스 열성 저항성: 병저항성 작물 개발을 위한 유전자 교정 소재 발굴 연구의 동향)

  • Han, Soo-Jung;Heo, Kyeong-Jae;Choi, Boram;Seo, Jang-Kyun
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.49-61
    • /
    • 2019
  • Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.

IL-15 in T-Cell Responses and Immunopathogenesis

  • Hoyoung Lee;Su-Hyung Park;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.11.1-11.18
    • /
    • 2024
  • IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.

Th17 responses and host defense against microorganisms: an overview

  • Van De Veerdonk, Frank L.;Gresnigt, Mark S.;Kullberg, Bart Jan;Van Der Meer, Jos W.M.;Joosten, Leo A.B.;Netea, Mihai G.
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.776-787
    • /
    • 2009
  • T helper (Th) 17 cells have recently been described as a third subset of T helper cells, and have provided new insights into the mechanisms that are important in the development of autoimmune diseases and the immune responses that are essential for effective antimicrobial host defense. Both protective and harmful effects of Th17 responses during infection have been described. In general, Th17 responses are critical for mucosal and epithelial host defense against extracellular bacteria and fungi. However, recent studies have reported that Th17 responses can also contribute to viral persistence and chronic inflammation associated with parasitic infection. It has become evident that the type of microorganisms and the setting in which they trigger the Th17 response determines the outcome of the delicate balancethat exists between Th17 induced protection and immunopathogenesis.

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

Visualization of Hepatitis B Virus (HBV) Surface Protein Binding to HepG2 Cells

  • Lee, Dong-Gun;Park, Jung-Hyun;Choi, Eun-A;Han, Mi-Young;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.175-179
    • /
    • 1996
  • Viral surface proteins are known to play an essential role in attachment of the virus particle to the host cell membrane. In case of the hepatitis B virus (HBV) several reports have described potential receptors on the target cell side, but no definite receptor protein has been isolated yet. As for the viral side, it has been suggested that the preS region of the envelope protein, especially the preS1 region, is involved in binding of HBV to the host cell. In this study, preS1 region was recombinantly expressed in the form of a maltose binding protein (MBP) fusion protein and used to identify and visualize the expression of putative HBV receptor(s) on the host cell. Using laser scanned confocal microscopy and by FACS analysis, MBP-preS1 proteins were shown to bind to the human hepatoma cell line HepG2 in a receptor-ligand specific manner. The binding kinetic of MBP-preS1 to its cellular receptor was shown to be temperature and time dependent. In cells permeabilized with Triton X-100 and treated with the fusion protein, a specific staining of the nuclear membrane could be observed. To determine the precise location of the receptor binding site within the preS1 region, several short overlapping peptides from this region were synthesized and used in a competition assay. In this way the receptor binding epitope in preS1 was revealed to be amino acid residues 27 to 51, which is in agreement with previous reports. These results confirm the significance of the preS1 region in virus attachment in general, and suggest an internalization pathway mediated by direct attachment of the viral particle to the target cell membrane.

  • PDF

Establishment of a Dual-Vector System for Gene Delivery Utilizing Prototype Foamy Virus

  • Soo-Yeon Cho;Yoon Jae Lee;Seong-Mook Jung;Young Min Son;Cha-Gyun Shin;Eui Tae Kim;Kyoung-Dong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.804-811
    • /
    • 2024
  • Foamy viruses (FVs) are generally recognized as non-pathogenic, often causing asymptomatic or mild symptoms in infections. Leveraging these unique characteristics, FV vectors hold significant promise for applications in gene therapy. This study introduces a novel platform technology using a pseudo-virus with single-round infectivity. In contrast to previous vector approaches, we developed a technique employing only two vectors, pcHFV lacking Env and pCMV-Env, to introduce the desired genes into target cells. Our investigation demonstrated the efficacy of the prototype foamy virus (PFV) dual-vector system in producing viruses and delivering transgenes into host cells. To optimize viral production, we incorporated the codon-optimized Env (optEnv) gene in pCMV-Env and the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE) at the 3' end of the transgene in the transfer vector. Consequently, the use of optEnv led to a significant enhancement in transgene expression in host cells. Additionally, the WPRE exhibited an enhancing effect. Furthermore, the introduced EGFP transgene was present in host cells for a month. In an effort to expand transgene capacity, we further streamlined the viral vector, anticipating the delivery of approximately 4.3 kbp of genes through our PFV dual-vector system. This study underscores the potential of PFVs as an alternative to lentiviruses or other retroviruses in the realm of gene therapy.

Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review

  • Hong, Bok Sil;Kim, Myoung-Ryu
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • [Purpose] Recent studies have shown that COVID-19 is often associated with altered gut microbiota composition and reflects disease severity. Furthermore, various reports suggest that the interaction between COVID-19 and host-microbiota homeostasis is mediated through the modulation of microRNAs (miRNAs). Thus, in this review, we aim to summarize the association between human microbiota and miRNAs in COVID-19 pathogenesis. [Methods] We searched for the existing literature using the keywords such "COVID-19 or microbiota," "microbiota or microRNA," and "COVID-19 or probiotics" in PubMed until March 31, 2021. Subsequently, we thoroughly reviewed the articles related to microbiota and miRNAs in COVID-19 to generate a comprehensive picture depicting the association between human microbiota and microRNAs in the pathogenesis of COVID-19. [Results] There exists strong experimental evidence suggesting that the composition and diversity of human microbiota are altered in COVID-19 patients, implicating a bidirectional association between the respiratory and gastrointestinal tracts. In addition, SARS-CoV-2 encoded miRNAs and host cellular microRNAs modulated by human microbiota can interfere with viral replication and regulate host gene expression involved in the initiation and progression of COVID-19. These findings suggest that the manipulation of human microbiota with probiotics may play a significant role against SARS-CoV-2 infection by enhancing the host immune system and lowering the inflammatory status. [Conclusion] The human microbiota-miRNA axis can be used as a therapeutic approach for COVID-19. Hence, further studies are needed to investigate the exact molecular mechanisms underlying the regulation of miRNA expression in human microbiota and how these miRNA profiles mediate viral infection through host-microbe interactions.

Late season commercial mosquito trap and host seeking activity evaluation against mosquitoes in a malarious area of the Republic of Korea

  • Buekett, Douglas-A.;Lee, Won-Ja;Lee, Kwan-Woo;Kim, Heung-Chul;Lee, Hee-Il;Lee, Jong-Soo;Shin, E-Hyun;Wirtz, Robert-A.;Cho, Hae-Wol;Ckaborn, David-M.;Coleman, Russel-E.;Kim, Wan-Y;Klein, Terry-A.
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • Field trials evaluating selected commercially available mosquito traps variously baited with light, carbon dioxide, and/or octenol were conducted from 18-27 September 2000 in a malarious area near Paekyeon-ri (Tongil-Chon) and Camp Greaves in Paju County, Kyonggi Province, Republic of Korea. The host-seeking activity for common mosquito species, including the primary vector of Japanese encephalitis, Culex tritaeniorhynchus Giles. was determined using hourly aspirator collections from a human and propane lantern-baited Shannon trap doting hours when temperatures exceeded $15^{\circ}C$. The total number of mosquitoes and number of each species captured during the test was compared using a block design. Significant differences were observed for the total number of mosquitoes collected, such that, the Mosquito MagnetTM with octenol > Shannon trap > ABC light trap with light and dry ice > Miniature Black Light trap (manufactured by John W. Hock) $\geq$ New Jersey Trap > ABC light trap with light only. Significant differences in numbers collected among trapes were noted for several species including: Aedes vexans (Meigen), Anopheles lesteri Baisas and Hu. An. sinensis Weidemann, An. sineroides Yamada, An. yatsushiroensis Miyazaki. Culex pipiens pallets Coquillett L., Cx. orientalis Edwards and Cx. tritaeniorhynchus. Host-seeking activity for most common species showed a similar bimodal pattern. Results from these field trap evaluations can significantly enhance current vector and disease surveillance efforts especially for the primary vector of Japanese encephalitis, Cx. tritaeniorhunchus.

Evaluation of the Frequency of the IL-28 Polymorphism (rs8099917) in Patients with Chronic Hepatitis C Using Zip Nucleic Acid Probes, Kerman, Southeast of Iran

  • Iranmanesh, Zahra;Mollaie, Hamid Reza;Arabzadeh, Seyed Alimohammad;Zahedi, Mohammad Javad;Fazlalipour, Mehdi;Ebrahimi, Saeede
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1919-1924
    • /
    • 2015
  • Polymorphisms in the region of the interleukin IL-28 gene on chromosome 19 have been related with clearance of hepatitis C virus (HCV), a major human pathogen responsible for chronic hepatitis, cirrhosis and hepatocellular carcinoma. About 3% of the world's population is infected with HCV. The long-term response to therapy is influenced by many host and viral factors, and recent evidence has indicated that some host genetic polymorphisms related to IL-28 are the most powerful predictors of virological response in patients with HCV. This study assessed frequency of the IL-28 polymorphism (rs8099917) in 50 patients (39 men and 11 women) with chronic hepatitis C using ZNA probe real time PCR new method. All patients were tested for genotype of HCV and the HCV viral load. In parallel, the levels of SGOT, SGPT and ALK enzymes were assessed. Treatment using Peg-interferon alpha with ribavirin was conducted for patients and subsequently samples were collected to detect any change in viral load or liver enzyme rates. The overall frequency of the TT allele is 74%, TG allele 20% and GG allele 6% and the percent of patients who had T allele was 84%. Clear reduction in viral load and liver enzymes was reported in patients with the T allele. Especially for genotype 1 which is relatively resistant to treatment, these alleles may have a role in this decline. In conclusion, we showed that IL-28 polymorphism rs8099917 strongly predicts virological response in HCV infection and that real-time PCR with Zip nucleic acid probes is a sensitive, specific and rapid detection method for detection of SNPs which will be essential for monitoring patients undergoing antiviral therapy.

Receptor-Mediated Endocytosis of Hepatitis B Virus PreS1d Protein in EBV-Transformed B-Cell line

  • Park, Jung-Hyun;Cho, Eun-Wie;Lee, Dong-Gun;Park, Jung-Min;Lee, Yun-Jung;Choi, Eun-A;Kim, Kill-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.844-850
    • /
    • 2000
  • The specific binding and internalization of viral particles is an essential step for the successful infection of viral pathogens. In the case of the hepatitis B virus (HBV), virions bind to the host cell via the preS domain of the viral surface antigen and are subsequently internalized by endocytosis. HBV-preS specific receptors are primarily expressed on hepatocytes, however, viral DNA and proteins have also been detected in extrahepatic sites, suggsting that celluar recepators for HBV may also exist on extrahepatic cells. Recently, an EBV-transformed B-cell line was identified onto which the preS region binds in a receptor-ligand specific manner. In this study, this specific interaction was further characterized, and the binding region within the preS protein was locaized. Also the internalization after host cell attachment was visualized and analyzed by fluorescence-labeled HBV-preS1 proteins using confocal microscopy. Energy depletion by sodium azide treatment effectively inhibited the internalization of the membrane-bound preS1 ligands, thereby indicating an energy-dependent receptor-mediated endocytotic pathway. Accordingly, the interaction of HBV-pres! with this specific B-cell line may serve as an effective model for an infection pathway in extrahepatic cells.

  • PDF