• Title/Summary/Keyword: Viral host

Search Result 300, Processing Time 0.021 seconds

Short-Term Viral Evolution in Response to Passaging I. Consequences for Population Size

  • Park, Gyung-Soon;Steven E. Kelley;Hing, Jung-Lim
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.83-91
    • /
    • 2002
  • The Red Queen hypothesis for the advantage of sex predicts that pathogens will evolve by increasing fitness with frequent encounters with specific host genotypes. In this study, BMV population size, measured as an indicator of fitness, was investigated during repeated passages through the same, or different host genotypes of the crop host, Hordeum vulgare (barley). Overall, mean BMV concentration within individual hosts was significantly higher in genetically homogeneous compared to heterogeneous host passage lines. In addition, BMV populations, passaged through a specific host variety, showed higher growth in that host variety compared to BMV passaged through varying varieties. These results supports the Red Queen hypothesis. However, the decrease in viral populations during passages contradicts the Red Queen. Nevertheless, the results found here show that even under simplified conditions, pathogens do not evolve in simple, predictable ways. Constraints on pathogen evolution may lead to counterintuitive results.

  • PDF

Short-Term Viral Evolution in Response to Passaging I. Consequences for Population Size

  • Park, Gyung-Soon;Kelley, Steven E.;Hong, Jung-Lim
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.217-225
    • /
    • 2002
  • The Red Queen hypothesis for the advantage of sex predicts that pathogens will evolve by increasing fitness with frequent encounters with specific host genotypes. In this study, BMV population size, measured as an indicator of fitness, was investigated during repeated passages through the same, or different host genotypes of the crop host, Hordeum vulgare (barley). Overall, mean BMV concentration within individual hosts was significantly higher in genetically homogeneous compared to heterogeneous host passage lines. In addition, BMV populations, passaged through a specific host variety, showed higher growth in that host variety compared to BMV passaged through varying varieties. These results supports the Red Queen hypothesis. However, the decrease in viral populations during passages contradicts the Red Queen. Nevertheless, the results found here show that even under simplified conditions, pathogens do not evolve in simple, predictable ways. Constraints on pathogen evolution may lead to counterintuitive results.

The Plant Cellular Systems for Plant Virus Movement

  • Hong, Jin-Sung;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.213-228
    • /
    • 2017
  • Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.

The unique role of domain 2A of the hepatitis A virus precursor polypeptide P1-2A in viral morphogenesis

  • Morace, Graziella;Kusov, Yuri;Dzagurov, Georgy;Beneduce, Francesca;Gauss-Muller, Verena
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.678-683
    • /
    • 2008
  • The initial step during assembly of the hepatitis A virus particle is driven by domain 2A of P1-2A, which is the precursor of the structural proteins. The proteolytic removal of 2A from particulate VP1-2A by an as yet unknown host enzyme presumably terminates viral morphogenesis. Using a genetic approach, we show that a basic amino acid residue at the C-terminus of VP1 is required for efficient particle assembly and that host proteases trypsin and cathepsin L remove 2A from hepatitis A virus particles in vitro. Analyses of insertion mutants in the C-terminus of 2A reveal that this part of 2A is important for liberation of P1-2A from the polyprotein. The data provide the first evidence that the VP1/2A junction is involved in both viral particle assembly and maturation and, therefore, seems to coordinate the first and last steps in viral morphogenesis.

Immune Responses to Viral Infection (바이러스 감염에 대한 면역반응)

  • Hwang, Eung-Soo;Park, Chung-Gyu;Cha, Chang-Yong
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.73-80
    • /
    • 2004
  • Viruses are obligate intracellular parasites which cause infection by invading and replicating within cells. The immune system has mechanisms which can attack the virus in extracellular and intracellular phase of life cycle, and which involve both non-specific and specific effectors. The survival of viruses depends on the survival of their hosts, and therefore the immune system and viruses have evolved together. Immune responses to viral infection may be variable depending on the site of infection, the mechanism of cell-to-cell spread of virus, physiology of the host, host genetic variation, and environmental condition. Viral infection of cells directly stimulates the production of interferons and they induce antiviral state in the surrounding cells. Complement system is also involved in the elimination of viruses and establishes the first line of defence with other non-specific immunity. During the course of viral infection, antibody is most effective at an early stage, especially before the virus enters its target cells. The virus- specific cytotoxic T lymphocytes are the principal effector cells in clearing established viral infections. But many viruses have resistant mechanism to host immune responses in every step of viral infection to cells. Some viruses have immune evasion mechanism and establish latency or persistency indefinitely. Furthermore antibodies to some viruses can enhance the disease by the second infection. Immune responses to viral infection are very different from those to bacterial infection.

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz;Mannaa, Mohamed;Hewedy, Omar;Ali, Mostafa G.;Jung, Hyejung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.432-448
    • /
    • 2022
  • Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.

SARS-CoV-2 Infection of Airway Epithelial Cells

  • Gwanghui Ryu;Hyun-Woo Shin
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.3.1-3.16
    • /
    • 2021
  • Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide since its outbreak in December 2019, and World Health Organization declared it as a pandemic on March 11, 2020. SARS-CoV-2 is highly contagious and is transmitted through airway epithelial cells as the first gateway. SARS-CoV-2 is detected by nasopharyngeal or oropharyngeal swab samples, and the viral load is significantly high in the upper respiratory tract. The host cellular receptors in airway epithelial cells, including angiotensin-converting enzyme 2 and transmembrane serine protease 2, have been identified by single-cell RNA sequencing or immunostaining. The expression levels of these molecules vary by type, function, and location of airway epithelial cells, such as ciliated cells, secretory cells, olfactory epithelial cells, and alveolar epithelial cells, as well as differ from host to host depending on age, sex, or comorbid diseases. Infected airway epithelial cells by SARS-CoV-2 in ex vivo experiments produce chemokines and cytokines to recruit inflammatory cells to target organs. Same as other viral infections, IFN signaling is a critical pathway for host defense. Various studies are underway to confirm the pathophysiological mechanisms of SARS-CoV-2 infection. Herein, we review cellular entry, host-viral interactions, immune responses to SARS-CoV-2 in airway epithelial cells. We also discuss therapeutic options related to epithelial immune reactions to SARS-CoV-2.

Interaction Study of Soybean mosaic virus Proteins with Soybean Proteins using the Yeast-Two Hybrid System

  • Seo, Jang-Kyun;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Lee, Su-Heon;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • Interactions between viral proteins and host proteins are essential for virus replication. Especially, translation of viral genes completely depends on the host machinery. In potyviruses, interactions of genome-linked viral protein (VPg) with host translation factors including eIF4E, eIF(iso)4E, and poly(A)-binding protein (PABP) has previously been characterized. In this study, we investigated interactions between Soybean mosaic virus (SMV) viral proteins and host translation factors by yeast two-hybrid system. SMV VPg interacted with eIF4E, eIF(iso)4E, and PABP in yeast two-hybrid system, while SMV helper component proteinase (HC-pro) interacted with neither of those proteins. The interaction between SMV NIb and PABP was also detected. These results are consistent with those reported previously in other potyviruses. Interestingly, we found reproducible and specific interactions between SMV coat protein (CP) and PABP. Deletion analysis showed that the region of CP comprising amino acids 116 to 206 and the region of PABP comprising amino acids 520 to 580 are involved in CP/PABP interactions. Soybean library screening with SMV NIb by yeast two-hybrid assay also identified several soybean proteins including chlorophyll a/b binding preprotein, photo-system I-N subunit, ribulose 1,5-biphosphate carboxylase, ST-LSI protein, translation initiation factor 1, TIR-NBS type R protein, RNA binding protein, ubiquitin, and LRR protein kinase. Altogether, these results suggest that potyviral replicase may comprise a multi-protein complex with PABP, CP, and other host factors.

Chicken FMRP Translational Regulator 1 (FMR1) Promotes Early Avian Influenza Virus Transcription without Affecting Viral Progeny Production in DF1 Cells

  • Woo, Seung Je;Park, Young Hyun;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2021
  • Avian influenza viruses (AIVs) must utilize host cellular factors to complete their life cycle, and fragile X mental retardation protein (FMRP) has been reported to be a host factor promoting AIV ribonucleoprotein (vRNP) assembly and exports vRNP from the nucleus to the cytoplasm. The functional role of chicken FMRP translational regulator 1 (cFMR1) as a host factor of AIV is, however, poorly understood. In this study, we targeted the cFMR1 gene in DF1 cells using clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing to examine the functional role of cFMR1 as a host factor of AIV. We found that cFMR1 stimulated viral gene transcription during early stages of the viruses' life cycle and did not affect viral progeny production and viral polymerase activity in DF1 cells 24 hours post infection. cFMR1 overexpression did not exert significant effects on virus production, compared to the control. Therefore, unlike in mammalian systems (e.g., humans or mice), cFMR1 did not play a pivotal role in AIV but only seemed to stimulate viral proliferation during early stages of the viral life cycle. These results imply that the interplay between host factors and AIV differs between mammals and avian species, and such differences should be considered when developing anti-viral drugs for birds or establishing AIV-resistant bird models.

Expression Profiling of WSSV ORF 199 and Shrimp Ubiquitin Conjugating Enzyme in WSSV Infected Penaeus monodon

  • Jeena, K.;Prasad, K. Pani;Pathan, Mujahid Khan;Babu, P. Gireesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1184-1189
    • /
    • 2012
  • White spot syndrome virus (WSSV) is one of the major viral pathogens affecting shrimp aquaculture. Four proteins, WSSV199, WSSV 222, WSSV 249 and WSSV 403, from WSSV are predicted to encode a RING-H2 domain, which in presence of ubiquitin conjugating enzyme (E2) in shrimp can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, a time course expression profile analysis of WSSV Open Reading Frame (ORF) 199 and Penaeus monodon ubiquitin conjugating enzyme (PmUbc) was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge by semi-quantitative RT-PCR as well as Real Time PCR. EF1${\alpha}$ was used as reference control to normalize the expression levels. A significant increase in PmUbc expression at 24 h post infection (h.p.i) was observed followed by a decline till 72 h.p.i. Expression of WSSV199 was observed at 24 h.p.i in WSSV infected P. monodon. Since the up-regulation of PmUbc was observed at 24 h.p.i where WSSV199 expression was detected, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. However, further studies need to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this chaos in the shrimp culture industry.