• Title/Summary/Keyword: Viral Sequence

Search Result 247, Processing Time 0.026 seconds

Classification of Viruses Based on the Amino Acid Sequences of Viral Polymerases (바이러스 핵산중합효소의 아미노산 서열에 의한 바이러스 분류)

  • Nam, Ji-Hyun;Lee, Dong-Hun;Lee, Keon-Myung;Lee, Chan-Hee
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • According to the Baltimore Scheme, viruses are classified into 6 main classes based on their replication and coding strategies. Except for some small DNA viruses, most viruses code for their own polymerases: DNA-dependent DNA, RNA-dependent RNA and RNA-dependent DNA polymerases, all of which contain 4 common motifs. We undertook a phylogenetic study to establish the relationship between the Baltimore Scheme and viral polymerases. Amino acid sequence data sets of viral polymerases were taken from NCBI GenBank, and a multiple alignment was performed with CLUSTAL X program. Phylogenetic trees of viral polymerases constructed from the distance matrices were generally consistent with Baltimore Scheme with some minor exceptions. Interestingly, negative RNA viruses (Class V) could be further divided into 2 subgroups with segmented and non-segmented genomes. Thus, Baltimore Scheme for viral taxonomy could be supported by phylogenetic analysis based on the amino acid sequences of viral polymerases.

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • Nam, Ki-Yean;Chung, Dong-Hoon;Choi, Je-Won;Lee, Yun-Seong;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Nucleotide Sequence Analysis of Movement Protein Gene from Tobacco Mosaic Virus Korean Pepper (TMV-KP) Strain (담배 모자이크 바이러스 한국고추계통에서 분리한 이동 단백질 유전자의 염기서열 분석)

  • 이재열;정동수;장무웅;최장경
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.87-90
    • /
    • 1995
  • Complementary DNA of the movement protein (MP) gene of tobacco mosaic virus Korean pepper strain (TMV-KP) was synthesized from purified TMV-KP RNA by using the reverse transcription and polymerase chain reaction (PCR) system. The synthesized double stranded cDNA was cloned into the plasmid pUC9 and transformed into Escherichia coli JM110. The movement protein gene of TMV-KP of the selected clones was subjected to sequence analysis by Sanger's dideoxy chain termination method. The complete sequence of viral MP gene from TMV-KP strain was 807 nucleotides long. The nucleotide of MP gene from TMV-KP has thirteen and two nucleotide differences from TMV vulgarae (TMV-OM) and Korean (TMV-K) strains, respectively. Thus, the nucleotide sequence of TMV-KP MP gene showed higher homology of 99% with that of TMV-K MP gene.

  • PDF

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.

Development of a nucleic acid detection method based on the CRISPR-Cas13 for point-of-care testing of bovine viral diarrhea virus-1b

  • Sungeun Hwang;Wonhee Lee;Yoonseok Lee
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.781-791
    • /
    • 2024
  • Bovine viral diarrhea (BVD) is a single-stranded, positive-sense ribonucleic acid (RNA) virus belonging to the genus Pestivirus of the Flaviviridae family. BVD frequently causes economic losses to farmers. Among bovine viral diarrhea virus (BVDV) strains, BVDV-1b is predominant and widespread in Hanwoo calves. Reverse-transcription polymerase chain reaction (RT-PCR) is an essential method for diagnosing BVDV-1b and has become the gold standard for diagnosis in the Republic of Korea. However, this diagnostic method is time-consuming and requires expensive equipment. Therefore, Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems have been used for point-of-care (POC) testing of viruses. Developing a sensitive and specific method for POC testing of BVDV-1b would be advantageous for controlling the spread of infection. Thus, this study aimed to develop a novel nucleic acid detection method using the CRISPR-Cas13 system for POC testing of BVDV-1b. The sequence of the BVD virus was extracted from National Center for Biotechnology Information (NC_001461.1), and the 5' untranslated region, commonly used for detection, was selected. CRISPR RNA (crRNA) was designed using the Cas13 design program and optimized for the expression and purification of the LwCas13a protein. Madin Darby bovine kidney (MDBK) cells were infected with BVDV-1b, incubated, and the viral RNA was extracted. To enable POC viral detection, the compatibility of the CRISPR-Cas13 system was verified with a paper-based strip through collateral cleavage activity. Finally, a colorimetric assay was used to evaluate the detection of BVDV-1b by combining the previously obtained crRNA and Cas13a protein on a paper strip. In conclusion, the CRISPR-Cas13 system is highly sensitive, specific, and capable of nucleic acid detection, making it an optimal system for the early point-of-care testing of BVDV-1b.

Characterization and Partial Nucleotide Sequence of Potato Virus X Isolated from Potato in Korea

  • Jung, Hyo-Won;Yun, Wan-Soo;Seo, Hyo-Won;Hahm, Young-Il;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.110-117
    • /
    • 2000
  • Potato virus X (PVX-KO) showing mild mosaic and stunting symptoms on potato (Solanum tuberosum) in Kangwon area has been isolated and characterized. EM observation of the purified virus particles showed flexuous rod shape of about 520 nm in length. The coat protein (CP) of the virus had a molecular weight of 31 kDa in SDS-PAGE analysis, and the viral RNA was approximately 6.4 kb in size in denatured agarose gel electro-phoresis. In gel-immunodiffusion tests, it reacted strongly with an antiserum to common PVX from BIOREABAAG (USA). A rabbit antiserum was produced using purified virus and used for routine PVX detection by ELISA. Cultivated potatoes in Kangwon and other areas were frequently infected with PVX-KO. Both Datura stramonium and Nicotiana tabaccum cultivars developed necrotic local lesions 5 days after inoculation, and systemic mosaic symptoms with vein clearing 2 weeks after inoculation. All the features agree with the description of other PVX strains. To confirm and determine PVX strains, reverse transcription-polymerase chain reaction experiment was conducted using specific primers for viral CP. Amplified DNA fragments were cloned and sequenced. Results showed nucleotide sequence homologies of about 88 to 99% to other PVX strains. Based on CP amino acid sequence deduced from nucleotide sequences and host range studies PVX-KO is considered a member of the type X subgroup of PVX.

  • PDF

Cloning and Sequencing of Coat Protein Gene of the Korean Isolate of Rice stripe virus

  • Hong, Yeon-Kyu;Kwak, Do-Yeon;Park, Sung-Tae;Choi, Jo-Im;Lee, Key-Woon;Lee, Bong-Choon
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.313-315
    • /
    • 2004
  • The coat protein gene of Korean isolate of Ricer stripe virus (RSV-Kr) was cloned and its nucleotide sequence was determined. Total RNA was extracted from infected leaves and RSV viral RNA was detected by using RT-PCR with specific primer of coat protein gene. The result of RT-PCR showed a specific band. Purified RT-PCR products of coat protein gene were ligated into the pGEM-T Easy plasmid vector and cloned cDNA was obtained for nucleotide sequence determination. Coat protein gene of RSV-Kr consisted of 969 bp long encoding a protein of 322 amino acids. RSV-Kr showed 94%-99% sequence identities to that of Japanese- and Chinese isolates.

Glial Cell-specific Regulation of the JC virus Early Promoter by Silencer and DNA Methylation (Silencer 및 DNA methylation에 의한 JC virus early promoter의 뇌교세포 특이적인 조절)

  • 김희선;우문숙
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). The JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, thus transcriptional regulation constitutes a major mechanism of glial tropism in PML. Here we found that pentanucleotide sequence immediately upstream of the TATA sequence functions as a cell-specific silencer in the JC virus transcription. In vitro binding studies showed that synthetic oligonucleotides spanning a pentanucleotide sequence, designated "oligo 2", interacts with nuclear proteins from non-glial cells in a cell-specific manner. Furthermore, the sequence preferentially repressed the heterologous thymidine kinase promoter activity in non-glial cells. We also tested whether JC virus transcription is controlled by DNA methylation. Transient transfection of in vitro methylated JC virus promoter abolished transcription in both the glial and non-glial cells. The repression fold was much larger in glial cells than in non-glial cells. Taken together, this finding suggests that glial cell-specific expression of the JC virus is controlled by DNA methylation as well as cell-specific silencers.

Comparison of the Real-Time Nucleic Acid Sequence-Based Amplification (NASBA) Assay, Reverse Transcription-PCR (RT-PCR) and Virus Isolation for the Detection of Enterovirus RNA. (엔테로바이러스 검출을 위한 real-time nucleic acid sequence-based amplification (NASBA), reverse transcription-PCR (RT-PCR) 및 바이러스 배양법의 비교)

  • Na, Young-Ran;Joe, Hyeon-Cheol;Lee, Young-Suk;Bin, Jae-Hun;Cheigh, Hong-Sik;Min, Sang-Kee
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.374-380
    • /
    • 2008
  • Rapid detection of enterovirus (EVs) is important in the management of aseptic meningitis. We examined the relative efficiency and specificity of the real-time nucleic acid sequence-based amplification (NASBA) comparing with the established reverse transcription polymerase chain reaction (RT-PCR) and viral culture method which were used for the detection of enterovirus RNA in clinical specimens. Of the total 292 samples, 145 were found to be positive to enterovirus RNA by real-time NASBA, 101 were positive by viral culture, and 86 were positive by RT-PCR. 147 samples and 46 samples were determined to be negative and positive by all methods respectively, but 4 samples were positive only by real-time NASBA. To compare the specificity of each method, various clinical samples which were diagnosed for herpes simplex virus (HSV)-1, HSV-2, adenovirus, mumps, and rhinovirus were applied. Except one rhinovirus sample which was false positive to enterovirus RNA by RT-PCR, the other different samples were negative to all three methods. The real-time NASBA procedure can be completed within 5 hours in contrast with 9 hours for the RT-PCR and 3-14 days for the viral culture. From this study, it was suggested that the real-time NASBA assay could be a standardized, rapid, specific, and sensitive procedure for the detection of enterovirus RNA.