• Title/Summary/Keyword: Viral Sequence

Search Result 243, Processing Time 0.027 seconds

SPF 닭에서 재조합 H9N3 조류 인플루엔자 백신의 효능과 안전성 평가

  • Sin, Jeong-Hwa;Mo, In-Pil
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.90-91
    • /
    • 2006
  • To reduce the economic impact and control Low pathogenic avian influenza (LPAI), vaccination with inactivated vaccine has been considered in this country. We tried to develop inactivated vaccine with reassorted H9N3 AI virus which has different type of neuraminidase compare to those of field AI virus. Before reassorted vaccine was produced, we confirm the virus as master seed by limiting dilution, RT-PCR and sequencing method. Also, we evaluate the biological characteristics of the virus to find out the possibility of prevention against field infection of AI virus. Finally, we evaluate the safety and efficacy of the vaccine made of reassorted AI virus in the specific pathogen free (SPF) chickens. After limiting dilution, we choose RV7CE4 as a vaccine candidate and compare the gene sequence of this vaccine strain to those of AI05GA which is parents strain. Compared to amino acid sequences of specific gene of AI05GA and RV7CE4, exhibited a high degree of amino acid sequence homology. In the safety and efficacy test, there were no specific clinical signs or mortality. Reassorted H9N3 viruses were reisolated in cloaca swab on 5 days post inoculation. In the vaccine study, once or twice vaccination was performed and challenged with H9N2 field virus (01310). Vaccine has no adverse effect on birds and formed good immune capability which reduce viral shedding in the birds infected with 01310. Based on the above result, we developed reassorted H9N3 vaccine which will efficiently prevent the low pathogenic AIV (H9N2) infection in the poultry farms.

  • PDF

Application of next generation sequencing (NGS) system for whole-genome sequencing of porcine reproductive and respiratory syndrome virus (PRRSV) (돼지생식기호흡기증후군바이러스(PRRSV)의 전장 유전체 염기서열(whole-genome sequencing) 분석을 위한 차세대 염기서열 분석법의 활용)

  • Moon, Sung-Hyun;Khatun, Amina;Kim, Won-Il;Hossain, Md Mukter;Oh, Yeonsu;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In the present study, fast and robust methods for the next generation sequencing (NGS) were developed for analysis of PRRSV full genome sequences, which is a positive sensed RNA virus with a high degree of genetic variability among isolates. Two strains of PRRSVs (VR2332 and VR2332-R) which have been maintained in our laboratory were used to validate our methods and to compare with the sequence registered in GenBank (GenBank accession no. EF536003). The results suggested that both of strains had 100% coverage with the reference; the VR2332 had the coverage depth from minimum 3 to maximum 23,012, for the VR2332-R from minimum 3 to maximum 41,348, and 22,712 as an average depth. Genomic data produced from the massive sequencing capacities of the NGS have enabled the study of PRRSV at an unprecedented rate and details. Unlike conventional sequence methods which require the knowledge of conserved regions, the NGS allows de novo assembly of the full viral genomes. Therefore, our results suggested that these methods using the NGS massively facilitate the generation of more full genome PRRSV sequences locally as well as nationally in regard of saving time and cost.

Identification and Characterization of a Conserved Baculoviral Structural Protein ODVP-6E/ODV-E56 from Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Giannopoulos, Paresa N.;Guertin, Claude
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.595-603
    • /
    • 2002
  • A gene that encodes a homologue to baculoviral ODVP-6E/ODV-E56, a baculoviral envelope-associated viral structural protein, has been identified and sequenced on the genome of Choristoneura fumiferana granulovirus (ChfuGV). The ChfuGV odvp-6e/odv-e56 gene was located on an 11-kb BamHI subgenomic fragment using different sets of degenerated primers, which were designed using the results of the protein sequencing of a major 39 kDa structural protein that is associated with the occlusion-derived virus (ODV). The gene has a 1062 nucleotide (nt) open-reading frame (ORF) that encodes a protein with 353 amino acids with a predicated molecular mass of 38.5 kDa. The amino acid sequence data that was derived from the nucleotide sequence in ChfuGV was compared to those of other baculoviruses. ChfuGV ODVP-6E/ODV-E56, along with othe baculoviral ODVP-6E/ODV-E56 proteins, all contained two putative transmembrane domains at their C-terminus. Several putative N-and O-glycosylation, N-myristoylation, and phosphorylation sites were detected in the ChfuGV ODVP-6E/ODV-E56 protein. A similar pattern was detected when a hydrophobicity-plots comparison was performed on ChfuGV ODVP-6E/ODV-E56 with other baculoviral homologue proteins. At the nucleotide level, a late promoter motif (GTAAG) was located at -14 nt upstream to the start codon of the GhfuGV odvp-6e/odv-e56 gene. a slight variant of the polyadenylation signal, AATAAT, was detected at the position +10 nt that is downstream from the termination signal. A phylogenetic tree for baculoviral ODVP-6E/ODV-E56 was constructed using a maximum parsimony analysis. The phylogenetic estimation demonstrated that ChfuGV ODVP-6E/ODV-E56 is most closely related to those of Cydia pomonella granulovirus (CpGV) and Plutella xylostella granulovirus (PxGV).

Nucleotide Sequence of Coat Protein Gene of Kyuri Green Mottle Mosaic Virus Isolated from Zucchini

  • Lee, Su-Heon;Lee, Young-Gyu;Park, Jin-Woo;Park, Hong-Soo;Kim, Yeong-Tae;Cheon, Jeong-Uk;Lee, Key-Woon
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.118-124
    • /
    • 2000
  • The coat protein (CP) gene of kyuri green mottle mosaic virus zucchini strain (KGMMV-Z) isolated from zucchini (Cucurbita pepo) in Chonfu, Korea in 1999 was sequenced by the reverse transcription and polymerase chain reaction with degenerate and generate primers originated from tobamoviruses. The degenerate primers were very effective in amplification of KGMMV-Z CP region. The KGMMV-Z CP gene consisted of 486 nucleotides and had the same nucleotide length compared with those of cucurbit-infecting tobamoviruses. KGMMV-Z CP gene shared 43.8, 44.2, and 44.4% nucleotide sequence similarity with the CP gene of cucumber green mottle mosaic virus watermelon strain (CGMMZ-W), CGMMV-KW1, and CGMMV-SH, respectively, whereas three CGMMV strains among themselves showed 98.6-99.6% nucleotide similarity. The deduced amino acids of KGMMV-Z CP gene were 161 amino acid residues with the molecular weight of 17,181 daltons. The first 24 codons of KGMMV-Z CP gene corresponded to the sequences of the N-terminal amino acid of the viral capsid protein. The amino acid sequences of KGMMV-Z CP had 45.3% similarity compared with those of three CGMMV strains. However, the amino acid sequences of CGMMV strains were identical. These results showed that two cucurbit-infecting tobamovirus members, KGMMV-Z and CGMMV were genetically distantly related.

  • PDF

Complete Genome Sequences of the Genomic RNA of Soybean mosaic virus Strains G7B and G5

  • Kim, Kook-Hyung;Lim, Won-Seok;Kim, Yul-Ho
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.171-176
    • /
    • 2003
  • The complete nucleotide sequences of the genomic RNAs of Soybean mosaic virus strains GS (SMV-G5) and G7H (SMV-G7H) were determined and compared with sequences of other SMV strains. Each viral RNA was determined to be 9588 nucleotides in length excluding the poly (A) tail and contained an open reading frame to encode a polyprotein subsequently processed into up to ten proteins by proteolytic cleavage. Com-parison of the amino acid sequences with those of other SMV strains showed high percentage of amino acid sequence homology with the same genome organization. The nucleotide and the deduced amino acid sequences between SMV-G5 and SMV-G7H were greater than 99% identity. When compared with those of other SMV strains in a phylogenetic analysis of the nucleotide and deduced amino acid sequences, they formed a distinct virus clade showing over 97% amino acid identity, but were more distantly related to the other potyvirus (44.1-69.6% identity). Interestingly, SMV G7H strain caused a severe mosaic or necrosis symptom in soybean cultivars including Jinpum-1, Jinpum-2, and Sodam, whereas, no symptom was observed in SMV-G5 inoculation. Complete nucleotide sequences of these strains will give clues for determining symptom determinant(s) in future research.

RNA-RNA Interactions between RNA Elements at the 5' end and at the Upstream of sgRNA of RNA Genome are Required for Potato virus X RNA Replication

  • Park, Mi-Ri;Park, Sang-Ho;Cho, Sang-Yun;Hemenway, Cynthia L.;Choi, Hong-Soo;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • RNA-RNA interactions and the dynamic RNA conformations are important regulators in virus replication in several RNA virus systems and may also involved in the regulation of many important virus life cycle phases, including translation, replication, assembly, and switches in these important stages. The 5' non-translated region of Potato virus X(PVX) contains multiple cis-acting elements that facilitate various viral processes. It has previously been proposed that RNA-RNA interactions between various RNA elements present in PVX RNA genome are required for PVX RNA accumulation(Hu et al., 2007; Kim and Hemenway, 1999). This model was based on the potential base-pairing between conserved sequence elements at the upstream of subgenomic RNAs(sgRNAs) and at the 5' and 3' end of RNA genome. We now provide more evidence that RNA-RNA base-pairing between elements present at the 5' end and upstream of each sgRNA is required for efficient replication of genomic and subgenomic plus-strand RNA accumulation. Site-directed mutations introduced at the 5' end of plus-strand RNA replication defective mutant(${\Delta}12$) increasing base-pairing possibility with conserved sequence elements located upstream of each sgRNAs restored genomic and subgenomic plus-strand RNA accumulation and caused symptom development in inoculated Nicotiana benthamiana plants. Serial passage of a deletion mutant(${\Delta}8$) caused more severe symptoms and restored wild type sequences and thus retained possible RNA-RNA base-pairing. Altogether, these results indicate that the RNA element located at the 5' end of PVX genome involved in RNA-RNA interactions and play a key role in high-level accumulation of plus-strand RNA in vivo.

Development of Multiplex PCR for Simultaneous Detection of Citrus Viruses and the Incidence of Citrus Viral Diseases in Late-Maturity Citrus Trees in Jeju Island

  • Hyun, Jae Wook;Hwang, Rok Yeon;Jung, Kyung Eun
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2017
  • Satsuma dwarf virus (SDV) or Citrus mosaic sadwavirus (CiMV) were not consistently detected in RTPCR assay with the primer sets based on gene of Japan isolates. SDV and CiMV isolates were distinctively divided into two groups based on phylogenetic analysis of PP2 gene cloned from 22 Korean isolates, and the Korean CiMV and SDV isolates shared 95.5-96.2% and 97.1-97.7% sequence identity with Japanese isolate, respectively. We developed PP2-1 primer set based on the PP2 gene sequence of Korean isolates to simultaneously and effectively detect SDV and CiMV. And CTLV-2013 and CTV-po primer sets were newly designed for detection of Citrus tatter leaf virus (CTLV) and Citrus tristeza virus (CTV), respectively. Using these primer sets, a new multiplex PCR assay was developed as a means to simultaneously detect 4 citrus viruses, CTV, CTLV, SDV, and CiMV. The degree of detection by the multiplex PCR were consistent with those of uniplex RT-PCR for detection of each of the viruses. Therefore, the new multiplex PCR provides an efficient method for detecting 4 citrus viruses, which will help diagnose many citrus plants at the same time. We verified that 35.2% and 72.1% of 775 trees in 155 orchards were infected with SDV or CiMV (SDV/CiMV) and CTV by the multiplex-PCR assay, respectively, and CTLV was not detected in any of the trees tested.

Genetic Diversity of a Natural Population of Apple stem pitting virus Isolated from Apple in Korea

  • Yoon, Ju Yeon;Joa, Jae Ho;Choi, Kyung San;Do, Ki Seck;Lim, Han Cheol;Chung, Bong Nam
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.195-199
    • /
    • 2014
  • Apple stem pitting virus (ASPV), of the Foveavirus genus in the family Betaflexiviridae, is one of the most common viruses of apple and pear trees. To examine variability of the coat protein (CP) gene from ASPV, eight isolates originating from 251 apple trees, which were collected from 22 apple orchards located in intensive apple growing areas of the North Gyeongsang and North Jeolla Provinces in Korea, were sequenced and compared. The nucleotide sequence identity of the CP gene of eight ASPV isolates ranged from 77.0 to 97.0%, while the amino acid sequence identity ranged from 87.7 to 98.5%. The N-terminal region of the viral CP gene was highly variable, whereas the C-terminal region was conserved. Genetic algorithm recombination detection (GARD) and single breakpoint recombination (SBP) analyses identified base substitutions between eight ASPV isolates at positions 54 and 57 and position 771, respectively. GABranch analysis was used to determine whether the eight isolates evolved due to positive selection. All values in the GABranch analysis showed a ratio of substitution rates at non-synonymous and synonymous sites (dNS/dS) below 1, suggestive of strong negative selection forces during ASPV CP history. Although negative selection dominated CP evolution in the eight ASPV isolates, SLAC and FEL tests identified four possible positive selection sites at codons 10, 22, 102, and 158. This is the first study of the ASPV genome in Korea.

Analysis of Symptom Determinant of Cucumber mosaic virus RNA3 via Pseudorecombinant Virus in Zucchini Squash

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Jang-Kyung;Kim, Kook-Hyung;Sohn, Seong-Han
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.272-280
    • /
    • 2007
  • Isolates of Cucumber mosaic virus (CMV) collected in Korea, were compared with their pathological features in tobacco and zucchini squash. Full-length cDNA clone of RNA3 was generated by using long-distance RT-PCR. Transcript RNA3 from the cDNA clone was inoculated onto host plants with transcripts RNA1 and RNA2 of Fny strain, generating RNA3-pseudorecombinant CMV. Timing and severity of systemic symptom was not significantly different among the pseudorecombinant CMVs in tobacco, compared with strains Fny-CMV and Pf-CMV. However, the pseudorecombinant CMVs induced two different systemic symptoms (mosaic vs. chlorotic spot) in zucchini squash. Based on symptom induction, the pseudorecombinant CMVs were categorized into two classes. The severity and timing of symptoms were correlated with viral RNA accumulations in systemic leaves of zucchini squash, suggesting that different kinetics of virus movement associated with CMV proteins are crucial for systemic infection and symptom development in zucchini squash. The analysis of movement proteins (MP) of CMV strains showed high sequence homology, but the differences of several amino acids were found in the C-terminal region between Class-I-CMV and Class-II-CMV. The analysis of coat proteins (CP) showed that the CMV isolates tested belonged to CMV subgroup I and the viruses shared overall 87-99% sequence identity in their genomes. Phylogenetic analysis of MP and CP suggested that biological properties of Korean CMV isolates have relationships associated with host species.

Rapid Detection of Noroviruses in Fecal Samples and Shellfish by Nucleic Acid Sequence-based Amplification

  • Kou Xiaoxia;Wu Qingping;Zhang Jumei;Fan Hongying
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • The purpose of this study was to determine the efficacy of a nucleic acid sequence-based amplification (NASBA) method of detecting noroviruses in artificially and naturally contaminated shellfish. We used 58 fecal samples that tested positive for noroviruses with electron microscopy (EM) to develop an NASBA assay for these viruses. Oligonucleotide primers targeting the polymerase coding region were used to amplify the viral RNA in an isothermal process that resulted in the accumulation of RNA amplicons. These amplicons were detected by hybridization with digoxigenin-labeled oligonucleotide probes that were highly specific for genogroup I (GI) and genogroup II (GII) of noroviruses. The expected band of 327bp appeared in denaturing agarose gel without any nonspecific band. The specific signal for each amplicon was obtained through Northern blotting in many repeats. All fecal samples of which 46(79.3%) belonged to GII and 12(20.6%) belonged to GI were positive for noroviruses by EM and by NASBA. Target RNA concentrations as low as 5pg/ml were detected in fecal specimens using NASBA. When the assay was applied to artificially contaminated shellfish, the sensitivity to nucleic acid was 100pg/1.5g shellfish tissue. The potential use of this assay was also confirmed in naturally contaminated shellfish collected from different ponds in Guangzhou city of China, of which 24 (18.76%) out of 128 samples were positive for noroviruses; of these, 19 (79.6%) belonged to GII and 5 (20.4%) belonged to GI. The NASBA assay provided a more rapid and efficient way of detecting noroviruses in fecal samples and demonstrated its potential for detecting noroviruses in food and environmental samples with high specificity and sensitivity.