• 제목/요약/키워드: Viral Sequence

검색결과 247건 처리시간 0.032초

Viral Effects of a dsRNA Mycovirus (PoV-ASI2792) on the Vegetative Growth of the Edible Mushroom Pleurotus ostreatus

  • Song, Ha-Yeon;Choi, Hyo-Jin;Jeong, Hansaem;Choi, Dahye;Kim, Dae-Hyuk;Kim, Jung-Mi
    • Mycobiology
    • /
    • 제44권4호
    • /
    • pp.283-290
    • /
    • 2016
  • A double-stranded RNA (dsRNA) mycovirus was detected in malformed fruiting bodies of Pleurotus ostreatus strain ASI2792, one of bottle cultivated commercial strains of the edible oyster mushroom. The partial RNA-dependent RNA polymerase (RdRp) gene of the P. ostreatus ASI2792 mycovirus (PoV-ASI2792) was cloned, and a cDNA sequences alignment revealed that the sequence was identical to the RdRp gene of a known PoSV found in the P. ostreatus strain. To investigate the symptoms of PoV-ASI2792 infection by comparing the isogenic virus-free P. ostreatus strains with a virus-infected strain, isogenic virus-cured P. ostreatus strains were obtained by the mycelial fragmentation method for virus curing. The absence of virus was verified with gel electrophoresis after dsRNA-specific virus purification and Northern blot analysis using a partial RdRp cDNA of PoV-ASI2792. The growth rate and mycelial dry weight of virus-infected P. ostreatus strain with PoV-ASI2792 mycovirus were compared to those of three virus-free isogenic strains on 10 different media. The virus-cured strains showed distinctly higher mycelial growth rates and dry weights on all kinds of experimental culture media, with at least a 2.2-fold higher mycelial growth rate on mushroom complete media (MCM) and Hamada media, and a 2.7-fold higher mycelial dry weight on MCM and yeast-malt-glucose agar media than those of the virus-infected strain. These results suggest that the infection of PoV mycovirus has a deleterious effect on the vegetative growth of P. ostreatus.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

메타전사체 분석을 이용한 국내 대추나무의 바이러스 감염실태 (Metatranscriptome-Based Analysis of Viral Incidence in Jujube (Ziziphus jujuba) in Korea)

  • 이홍규;한승주;박상민;김민석;민진경;김학주;강동현;김민희;정원영;백승빈;양민주;임태건;안찬훈;김태동;박충열;문제선;이수헌
    • 식물병연구
    • /
    • 제29권3호
    • /
    • pp.276-285
    • /
    • 2023
  • 본 연구는 국내 대추나무 바이러스 감염실태를 구명하기 위하여 시험포장 및 농가포장에서 다양한 이상증상을 나타내는 시료 61점을 채집하였다. 이후 채집한 시료는 메타전사체 분석, reverse transcription polymerase chain reac tion 진단, 염기서열 분석에 사용하였다. 그 결과 국내 대추나무에서는 2종의 DNA 바이러스, jujube associated badnavirus (JuBV), jujube mosaic-associated virus (JuMaV)와 1종의 RNA 바이러스, jujube yellow mottle-associated virus (JYMaV)를 동정하였다. 채집된 모든 시료는 3종 바이러스에 단독 또는 복합감염되어 있음을 확인하였다. 바이러스별 검출은 JuBV 100%, JYMaV 90.2%, JuMaV 8.2%로 나타났다. 3종 바이러스의 감염조합은 JuBV 단독감염 9.8%, JuBV+JYMaV 2종 복합감염 82.0%, JuBV+JYMaV+JuMaV 3종 복합감염 8.2%로 나타났다. 국내 대추나무에서 검출된 3종 바이러스의 염기서열 분석결과 중국에서 보고된 각각의 바이러스 분리주와 매우 높은 상동성을 나타내었다. 본 논문은 대추나무 바이러스 무병묘 생산을 위한 기초자료로 활용될 수 있을 것으로 기대되며, 국내 대추나무에서 바이러스 감염실태와 JuBV와 JuMaV에 대한 첫 보고이다.

사람세포거대바이러스 (Human Cytomegalovirus)의 극초기항원-1 (Immediate Early-1, IE-1)에 반응하는 c-jun Promoter의 유전자 지도 분석 (Mapping of Human Cytomegalovirus IE1 Responsive Elements in the c-jun Promoter)

  • 박정규;한태희;김대중;김진희;황응수;최성배;차창룡
    • 대한바이러스학회지
    • /
    • 제28권3호
    • /
    • pp.267-274
    • /
    • 1998
  • Human cytomegalovirus (HCMV) has the ability to activate the expression of many viral and cellular genes. Among various viral proteins, the immediate early proteins (IE1-72kDa, IE2-86kDa) have been known to be potent transactivators. The product of c-jun proto-oncogene is important in cell activation and differentiation. Here, we tried to find out if the IE could activate the c-jun promoter and also tried to identify the responsible sequence elements in the c-jun activation by IE1-72kDa. We found HCMV IE expression transactivated the c-jun promoter in human embryonal lung fibroblasts (HEL). The activation fold by IE1-72kDa, IE2-86kDa and IE2-55kDa was 23, 35, and 5, respectively. When the expression of each IE was combined, it showed synergism. Expression of (IE1-72kDa + IE2-86kDa) and (IE1-72kDa + IE2-86kDa + IE2-55kDa) resulted in 131 and 162 fold increase, respectively. The c-jun promoter region between -117 and -59 contains binding sites for the transcription factors Spl, CAAT, AP-l like (ATF/CREB), and MEF2. Transient expression assays were performed using various reporter plasmids containing the c-jun promoter-regulatory region linked to the luciferase gene and a plasmid expressing HCMV IE1 gene. Deletional and point mutational analysis showed that the sequence between -225 to -160 and the CTF binding site were involved in the up-regulation of c-jun promoter.

  • PDF

Molecular Characterization of an Isolate of Bean Common Mosaic Virus First Identified in Gardenia Using Metatranscriptome and Small RNA Sequencing

  • Zhong-Tian Xu;Hai-Tao Weng;Jian-Ping Chen;Chuan-Xi Zhang;Jun-Min Li;Yi-Yuan Li
    • The Plant Pathology Journal
    • /
    • 제40권1호
    • /
    • pp.73-82
    • /
    • 2024
  • Gardenia (Gardenia jasminoides) is a popular and economically vital plant known for its ornamental and medicinal properties. Despite its widespread cultivation, there has been no documentation of plant viruses on gardenia yet. In the present study, gardenia leaves exhibiting symptoms of plant viral diseases were sampled and sequenced by both metatranscriptome and small RNA sequencing. As a consequence, bean common mosaic virus (BCMV) was identified in gardenia for the first time and named BCMV-gardenia. The full genome sequence of BCMV-gardenia is 10,054 nucleotides (nt) in length (excluding the poly (A) at the 3' termini), encoding a large polyprotein of 3,222 amino acids. Sequence analysis showed that the N-termini of the polyprotein encoded by BCMV-gardenia is less conserved when compared to other BCMV isolates, whereas the C-termini is the most conserved. Maximum likelihood phylogenetic analysis showed that BCMVgardenia was clustered closely with other BCMV isolates identified outside the leguminous plants. Our results indicated that the majority of BCMV-gardenia virus-derived small interfering RNAs (vsiRNAs) were 21 nt and 22 nt, with 21 nt being more abundant. The first nucleotide at the 5' termini of vsiRNAs derived from BCMV-gardenia preferred U and A. The ratio of vsiRNAs derived from sense (51.1%) and antisense (48.9%) strands is approaching, and the distribution of vsiRNAs along the viral genome is generally even, with some hot spots forming in local regions. Our findings could provide new insights into the diversity, evolution, and host expansion of BCMV and contribute to the prevention and treatment of this virus.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

Identification and Sequence Analysis of RNA3 of a Resistance-Breaking Cucumber mosaic virus Isolate on Capsicum annuum

  • Lee Mi-Yeon;Lee Jang-Ha;Ahn Hong-Il;Yoon Ju-Yeon;Her Nam-Han;Choi Jang-Kyung;Choi Gug-Seon;Kim Do-Sun;Harn Chee-Hark;Ryu Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제22권3호
    • /
    • pp.265-270
    • /
    • 2006
  • Cultivated hot pepper crops showing severe mosaic symptom were found in Korea in 2004 and their causal agent was identified as Cucumber mosaic virus (CMV). These pepper crops was resistant to the virus in the filled, and they belonged to pathotype 0 (P0) resistant pepper. Resistance screening of selected pepper plants showed that a pepper isolate of CMV was the P0 resistance-breaking virus. This P0 resistance-breaking isolate of CMV, named as Ca-P1, was isolated from leaves of the virus-infected Capsicum annuum cv. Manidda that showed systemic severe mosaic symptom. Ca-P1-CMV could induce systemic mosaic symptoms on P0-susceptible (P0-S) and P0-resistant (P0-R) cultivars whereas an ordinary strain (Fny-CMV) could not infect P0-R. This result suggests that Ca-P1-CMV can overcome P0 resistant pepper cultivars. To analyze its genome sequence, the complete nucleotide sequence of RNA3 of Ca-P1-CMV was determined from the infectious full-length cDNA clone of the virus. RNA3 of Ca-P1-CMV consisted of 2,219 nucleotides. Overall sequence homology of RNA3-encoded two viral proteins (movement protein and coat protein) revealed high similarity (75.2-97.2%) with the known CMV strains. By sequence analysis with known representative strains of CMV, Ca-P1-CMV belongs to a typical member of CMV subgroup IB. The resistance and resistance-breaking mechanisms of pepper and counterpart CMV, respectively, remain to be investigated, which will enrich the genetic resources and accelerate CMV-resistant pepper breeding programs.

국내에서 분리된 G형 간염바이러스 NS-5 Region 염기서열의 계통학적 분석 (The Phylogenetic Analysis of the NS-5 Region Sequence of Hepatitis G Viruses Isolated in Korea)

  • 지영미;김기순;천두성;박정구;강영화;이윤성;정윤석;김지은;윤재득
    • 대한바이러스학회지
    • /
    • 제29권1호
    • /
    • pp.45-53
    • /
    • 1999
  • We examined the hepatitis G virus infections among 227 Koreans who were healthy or were suspected of hepatitis and determined the phylogenetic relationship based on a part of the NS-5 region of 5 positive samples. Viral RNA was extracted from sera and cDNA was synthesized and subsequently amplified by RT-PCR (reverse transcription-polymerase chain reaction) or RT-nested PCR using random hexamer and NS-5 specific primers (470-20-1-77F, 470-20-1-211R, HGVNESTFO, HGVNESTRE). Five positives were found to belong to samples of patients showing symptoms of viral hepatitis. Primers used for PCR or nested PCR were derived from the NS-5 region. On the other hand, no amplification was detected using primers derived from the 5'-NCR (G-146F, G-401R). We performed TA cloning and sequencing of 5 amplified fragments, and their sequences were compared with those of foreign isolates of HGV. The phylogenetic analysis using MegAlign programme of DNAstar has shown that the Korean isolates are clustered on the phylogenetic tree. In summary, we confirmed the hepatitis G virus infection in 5 cases out of 12 patients showing the symptoms of viral hepatitis. The phylogenetic analysis of sequences of 5 amplified fragments showed that their relations to each other were closer than those to the foreign HGV isolates reported.

  • PDF

벼 흑조위축병 바이러스의 분자생물학적 연구 (A Molecular Study of Rice Black-Streaked Dwarf Virus)

  • 박종석;배신철;김영민;백융기;김주곤;황영수
    • Applied Biological Chemistry
    • /
    • 제37권3호
    • /
    • pp.148-153
    • /
    • 1994
  • 우리나라에서 발생하는 주요 벼 바이러스로써 저항성 유전자원이 없어 현재까지 저항성 품종이 육성되지 못하고 있는 흑조위축병(Rice Black-Streaked Dwarf Virus, RBSDV)에 대한 유전정보에 대하여 연구하였다. 매개충인 보독 애멸구를 이용하여 이병주를 생산한 후 바이러스 입자를 순수 분리하여 전기영동한 결과 10개의 band를 확인하였다. RBSDV RNA로부터 역전사 효소를 이용 cDNA를 합성한 후 ${\lambda}gt11$에 삽입하여 cDNA library를 만들었다. 이 library에서 6개의 단편을 선발하였으며 그중 한 개의 clone(pRV3)은 hybridization을 통해 RBSDV 게놈 조각 3번 유래인 것을 확인하였다. pRV3의 염기서열을 결정한 결과 2개의 ORF의 일부분들을 갖고 있었으며 이것은 바이러스 저항성 작물개발에 이용될 수 있을 것으로 생각된다.

  • PDF

In Vitro에서의 Tetracycline Inducible Expression System에 의한 재조합 돼지 성장호르몬 유전자의 발현 (Expression of the Recombinant Porcine GH Gene In Vitro Using Tetracycline Inducible Expression System)

  • 권모선;구본철;김태완
    • Reproductive and Developmental Biology
    • /
    • 제29권1호
    • /
    • pp.49-55
    • /
    • 2005
  • 본 연구에서는 돼지의 체지방을 감소시키고 성장을 촉진시키는 인자인 PGH를 cloning하여 이 유전자를 외래 유전자의 발현이 유도적으로 조절되는 Tet system에 도입하고자 하였다. 또한 유전자의 발현이 turn on되었을 때 그 발현 정도를 최대화하기 위하여 WPRE 서열을 도입하였다. 구축된 각각의 vector는 retrovirus 생산 세포주에 도입하여 virus를 생산하였으며 이를 여러 종류의 표적세포에 감염시켜서 PGH 유전자의 발현을 확인한 결과, 1×10/sup 6/ 세포에서 350∼2,100 ng의 PGH가 분비되었으며 특히 PFF 세포에서 가장 높은 발현을 나타내었다. Tet system에 도입된 PGH의 발현이 유도적으로 조절되는지를 PFF 세포에서 확인한 결과, 유도 효율이 2∼6배로 나타났으며 WPRE 서열이 rtTA 유전자의 downstream에 위치한 조건에서 가장 높은 유도 효율을 나타내었다. 이러한 PGH 유전자의 유도적인 발현의 조절은 고급육 생산의 형질전환 돼지 연구에 있어서 가장 큰 문제점이 되는 PGH 유전자의 과다한 발현에 의한 생리적인 부작용을 최소화할 수 있는 해결 방안으로 제시될 수 있을 것이다.