• 제목/요약/키워드: Viral Genome

검색결과 236건 처리시간 0.028초

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • 제39권1호
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

Genealogical Diversity of Endogenous Retrovirus in the Jawless Fish Genome

  • Song Jing;Wei Jie;Ma Yongping;Sun Yan;Li Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1412-1419
    • /
    • 2023
  • Retroviral integration into ancient vertebrate genomes left traces that can shed light on the early history of viruses. In this study, we explored the early evolution of retroviruses by isolating nine Spuma endogenous retroviruses (ERVs) and one Epsilon ERV from the genomes of Agnatha and Chondrichthyes. Phylogenetic analysis of protein sequences revealed a striking pattern of co-evolution between jawless fish ERV and their host, while shark ERV underwent ancient cross-class viral transmission with jawless fish, ray-finned fish, and amphibians. Nucleotide sequence analysis showed that jawless fish ERV emerged in the Palaeozoic period, relatively later than ray-finned fish ERV. Moreover, codon analysis suggested that the jawless fish ERV employed an infection strategy that mimics the host codon. The genealogical diversity of ERVs in the jawless fish genome highlights the importance of studying different viral species. Overall, our findings provide valuable insights into the evolution of retroviruses and their interactions with their hosts.

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제17권3호
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

Notch Signal Transduction Induces a Novel Profile of Kaposi's Sarcoma-Associated Herpesvirus Gene Expression

  • Chang Hee-Soon
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.217-225
    • /
    • 2006
  • Kaposi's sarcoma-associated herpesvirus (KSHV) RTA transcription factor is recruited to its responsive elements through interaction with RBP-Jk that is a downstream transcription factor of the Notch signaling pathway that is important in development and cell fate determination. This suggests that KSHV RTA mimics cellular Notch signal transduction to activate viral lytic gene expression. Here, I demonstrated that unlike other B lymphoma cells, KSHV -infected primary effusion lymphoma BCBL1 cells displayed the constitutive activation of ligand-mediated Notch signal transduction, evidenced by the Jagged ligand expression and the complete proteolytic process of Notch receptor I. In order to investigate the effect of Notch signal transduction on KSHV gene expression, human Notch intracellular (hNIC) domain that constitutively activates RBP-Jk transcription factor activity was expressed in BCBL1 cells, TRExBCBL1-hNIC, in a tetracycline inducible manner. Gene expression profiling showed that like RTA, hNIC robustly induced expression of a number of viral genes including KS immune modulatory gene resulting in downregulation of MHC I and CD54 surface expression. Finally, the genetic analysis of KSHV genome demonstrated that the hNIC-mediated expression of KS during viral latency consequently conferred the downregulation of MHC I and CD54 surface expression. These results indicate that cellular. Notch signal transduction provides a novel expression profiling of KSHV immune deregulatory gene that consequently confers the escape of host immune surveillance during viral latency.

Situation of HPV16 E2 Gene Status During Radiotherapy Treatment of Cervical Carcinoma

  • Kahla, Saloua;Kochbati, Lotfi;Maalej, Mongi;Oueslati, Ridha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2869-2873
    • /
    • 2014
  • Background: Human papillomavirus (HPV) integration within the E2 gene has been proposed as a critical event in cervical carcinogenesis. This study concerned whether HPV16 status and E2 gene intactness are predictive of radiation response in patients with cervical cancer. Materials and Methods: Biopsies of 44 patients with cervical cancer were collected before or after radiotherapy. The presence of HPV16 was assessed by polymerase chain reaction (PCR) using specific primers for the L1 region. E2 disruption was detected by amplifying the entire E2 gene. Results: HPV16 DNA was found in 54.5% of the clinical samples. Overall, 62.5% of the HPV16 positive tumors had integrated viral genome and 37.5% had episomal genome. There was a tendency of increase of HPV16 E2 negative tumors compared with HPV16 L1 ones in advanced stages (75% versus 20% in stage III respectively). Detection of E2 gene appeared influenced by the radiotherapy treatment, as the percentage of samples containing an intact HPV16 E2 was more frequent in pretreated patients compared to radiotherapy treated patients (66.6% versus 20%). The radiation therapy caused an eight-fold [OR= 8; CI=1.22-52.25; p=0.03] increase in the risk of HPV16 genome disruption. The integration status is influenced by the irradiation modalities, interestingly E2 disruption being found widely after radiotherapy treatment (75%) with a total fractioned dose of 50Gy. Conclusions: This study reveals that the status of the viral DNA may be used as a marker to optimize the radiation treatment.

Characterization of Hibiscus Chlorotic Ringspot Virus-Derived vsiRNAs from Infected Hibiscus rosa-sinensis in China

  • Han-hong Lan;Luan-mei Lu
    • The Plant Pathology Journal
    • /
    • 제40권5호
    • /
    • pp.415-424
    • /
    • 2024
  • Lots of progress have been made about pathogen system of Hibiscus rosa-sinensis and hibiscus chlorotic ringspot virus (HCRSV), however, interactions between H. rosa-sinensis and HCRSV remain largely unknown. Hereon, firstly, HCRSV infection in H. rosa-sinensis from Zhangzhou city of China was confirmed by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods. Secondly, sequence feature analysis showed the full-length sequence of HCRSV-ZZ was 3,909 nucleotides (nt) in length and had a similar genomic structure with other carmovirus. It contains a 5' untranslated region (UTR), followed by seven open reading frames encoding for P28, P23, P81, P8, P9, P38, and P25, and the last a 3-terminal UTR. Thirdly, HCRSV-ZZ-derived vsiRNAs were identified and characterized for the first time from disease H. rosa-sinensis through sRNA-seq to reveal interactions between pathogen ant plant host. It was shown that the majority of HCRSV-ZZ-derived vsiRNAs were 21 nt, 22 nt, and 20 nt, with 21 nt being most abundant. The 5'-terminal nucleotide of HCRSV-ZZ vsiRNAs preferred U and C. HCRSV-ZZ vsiRNAs derived predominantly (72%) from the viral genome positive-strand RNA. The distribution of HCRSV-ZZ vsiRNAs along the viral genome is generally even, with some hot spots and cold spots forming in local regions. These hot spots and cold spots could be corresponded to the regions of stem loop secondary structures forming in HCRSV-ZZ genome by nucleotide paring. Taken together, our findings certify HCRSV infection in H. rosa-sinensis and provide an insight into interaction between HCRSV and H. rosa-sinensis and contribute to the prevention and treatment of this virus.

광학현미경 In Situ Hybridization에 의한 Viral RNA 증명 (Identification of Viral RNA by Light Microscopic in situ Hybridization)

  • 최원기;주경웅;김석홍
    • 대한의생명과학회지
    • /
    • 제2권2호
    • /
    • pp.249-255
    • /
    • 1996
  • 토끼 출혈증 바이러스에 감염된 조직을 10% 포르말린 고정, 파라핀 블록으로 보관했던 것으로 표본을 만들고 biotin 표지된 올리고뉴클레오티드 probe를 사용하는 in situ hybridization 기법으로 viral RNA를 조사하였다. in situ hybridization 기법은 핵산을 규명하는 다른 방법들에 비하여 신속하고 특이성인 높은 기법으로 모든 과정이 MicroProbe$^{TM}$ capillary action system에서 1-2시간 이내에 완료된다. Viral RNA는 간세포의 세포질과 신장의 피질에서 주로 관찰되었으나, 폐조직과 신장의 수질에서는 부분적으로 적색신호가 보였다. 비록 기술적인 한계를 가지고 있지만 다른 핵산 진단방법 보다 많은 장점을 가지고 있어 조직 병리학적으로 바이러스 진단하는데 하나의 독특한 기법으로 채용되리라 기대된다.

  • PDF

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.

Isolation and identification of canine adenovirus type 2 from a naturally infected dog in Korea

  • Yang, Dong-Kun;Kim, Ha-Hyun;Yoon, Soon-Seek;Lee, Hyunkyoung;Cho, In-Soo
    • 대한수의학회지
    • /
    • 제58권4호
    • /
    • pp.177-182
    • /
    • 2018
  • Canine adenovirus type 2 (CAV-2) infection results in significant respiratory illness in dogs. Isolating and culturing CAV-2 allows for investigations into its pathogenesis and the development of vaccines and diagnostic assays. In this study, we successfully isolated a virus from a naturally infected dog in Gyeonggi-do, Korea. The virus was propagated in Madin-Darby canine kidney (MDCK) and Vero cells and showed a specific cytopathic morphology that appeared similar to a bunch of grapes. The virus was first confirmed as CAV-2 based on these cytopathic effects, an immunofluorescence assay, hemagglutination assay, and electron microscopy. The viral titer of the isolate designated APQA1601 reached $10^{6.5}$ 50% tissue culture infections dose per mL in MDCK cells and exhibited no hemagglutination units with erythrocytes from guinea pig. The virus was also confirmed by polymerase chain reaction and next-generation sequencing. The APQA1601 strain had the highest similarity (~99.9%) with the Toronto A26/61 strain, which was isolated in Canada in 1976 when the nucleotide sequences of the full genome of the APQA1601 strain were compared with those of other CAV strains. Isolating CAV-2 will help elucidate the biological properties of CAV-2 circulating in Korean dogs.

Hepatitis B Virus DNA Polymerase Displays an Anti-Apoptotic Effect by Interacting with Elongation Factor-1 Alpha-2 in Hepatoma Cells

  • Niu, Xianli;Nong, Shirong;Gong, Junyuan;Zhang, Xin;Tang, Hui;Zhou, Tianhong;Li, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.16-24
    • /
    • 2021
  • Hepatitis B virus (HBV) genome P-encoded protein HBV DNA polymerase (Pol) has long been known as a reverse transcriptase during HBV replication. In this study, we investigated the impact of HBV Pol on host cellular processes, mainly apoptosis, and the underlying mechanisms. We showed a marked reduction in apoptotic rates in the HBV Pol-expressed HepG2 cells compared to controls. Moreover, a series of assays, i.e., yeast two-hybrid, GST pull-down, co-immunoprecipitation, and confocal laser scanning microscopy, identified the host factor eEF1A2 to be associated with HBV Pol. Furthermore, knockdown of eEF1A2 gene by siRNA abrogated the HBV Pol-mediated anti-apoptotic effect with apoptosis induced by endoplasmatic reticulum (ER) stress-inducer thapsigargin (TG), thus suggesting that the host factor eEF1A2 is essential for HBV Pol's anti-apoptosis properties. Our findings have revealed a novel role for HBV Pol in its modulation of apoptosis through integrating with eEF1A2.