• Title/Summary/Keyword: Vinyl silane

Search Result 34, Processing Time 0.033 seconds

Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.175-180
    • /
    • 2018
  • Solution-styrene-butadiene rubber (SSBR) composites were manufactured using four kinds of fillers: silica-silane coated carbon black (SC-CB) hybrid, starch-SC-CB hybrid, pure silica, and pure starch. The influence of filler type on the mechanical properties of the rubber matrix was studied in this work. SC-CB was prepared by silane-graft-coating using vinyl triethoxy silane and carbon black, which enhanced the dispersion effect between the rubber matrix and the filler, and improved the mechanical properties of the compounds. The morphology of the composites was observed by field-emission scanning electron microscopy (FE-SEM). The thermal decomposition behavior of the composites was determined by thermogravimetric analysis (TGA), and the crosslinking behavior of the composites was tested using a rubber process analyzer (RPA). The hardness, tensile strength, swelling ratio, and gas transmittance rate of the composites were evaluated according to ASTM. The test results revealed that with the addition of SC-CB, the hybrid fillers, especially those blended with silica, showed a better reinforcement effect, the highest hardness and tensile strength, and stable thermal decomposition behavior. This implies that the silica-SC-CB hybrid filler has a notable mechanical reinforcement effect on the SSBR matrix. Because of self-crosslinking during its synthesis, the starch-SC-CB hybrid filler produced the most dense matrix, which improved the anti-gas transmittance property. The composites with the hybrid fillers had better anti-swelling properties as compared to the neat SSBR composite, which was due to the hydrophilicity of silica and starch.

Polymerization of Hydrosilanes and Vinyl Monomers in the Presence of Transition Metal Complex

  • Kim, Myoung-Hee;Lee, Jun;Cha, Hyo Chang;Shin, Joong-Hyeok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This minireview provides the chosen examples of our recent discoveries in the polymerization of hydrosilanes, dihydrosilole, lactones, and vinyl derivatives using various catalysts. Hydrosilanes and lactones copolymerize to give poly(lactone-co-silane)s with $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., $AgNO_3$, $Ag_2SO_4$, $HAuCl_4$, $H_2PtCl_6$) to give nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. $Cp_2M/CX_4$ (M = Fe, Co, Ni; X = Cl, Br, I) combination initiate the polymerization of vinyl monomers. In the photopolymerization of vinyl monomers using $Cp_2M/CCl_4$ (M = Fe, Co, Ni), the photopolymerization of MMA initiated by $Cp_2M/CCl_4$ (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe$ > $Cp_2Ni$ > $Cp_2Co$, the molecular weight decreases in the order $Cp_2Co$ > $Cp_2Ni$ > $Cp_2Fe$. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The photopolymerizations are not living. Many exciting possibilities remain to be examined and some of them are demonstrated in the body of the minireview.

  • PDF

Studies on the Physical Properties of Synthetic Rubber Blends Containing Rein-forcing Fillers (보강성 충전제를 함유한 합성고무 블렌드의 물리적 특성에 관한 연구)

  • Go, Jin-Hwan;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.231-237
    • /
    • 1998
  • In order to investigate the physical properties of rubber blend compound, this experiment was carried out on the cure rate, loss tangent, reinforcement and abrasion properties of S-SBR (solution styrene-butadiene rubber) blends containing silane coupled silica and E-SBR (emulsion styrene-butadiene rubber) blends containing carbon black as a model compound. E-SBR blend showed the highest total bound rubber(TBR), while S-SBR blends showed constant TBR level regardless of rubber type. Rapid cure rate was achieved when the styrene and vinyl content of rubber microstructure decreased and TBR content of rubber compounds increased. The modulus as the index of rubber reinforcement showed the linear relation with TBR content. The large amount of PICO loss was observed when the styrene and vinyl content of rubber microstructure increased, while the small amount of PICO loss was observed when the ratio of bu-tadiene increased in the S-SBR blends with silane copuled silica. The high loss tangent at $0^{\circ}C$, the low loss tangent at $60^{\circ}C$, and the large difference of loss tangent were shown in the S-SBR blends with high styrene content compared to E-SBR blend.

  • PDF

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

Light Efficiency of LED Package with TiO2-nanoparticle-dispersed Encapsulant (TiO2 나노입자가 혼합된 봉지재를 적용한 LED 패키지의 광효율 특성 평가)

  • Lee, Tae-Young;Kim, Kyoung-Ho;Kim, Mi-Song;Ko, Eun-Soo;Chio, Jong-Hyun;Moon, Kyoung-Sik;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.31-35
    • /
    • 2014
  • $TiO_2$-nanoparticle-dispersed silicone was applied to a LED package and the light efficiency of the LED package was evaluated in this study. The addition of $TiO_2$ nanoparticles in silicone increased refractive index, which improved the light efficiency of the LED package. The $TiO_2$ nanoparticles were fabricated by hydrothermal synthesis and were dispsersed by a vinyl silane coating treatment. After the silane treatment, the $TiO_2$ nanoparticles dispersed with diameters of 10~40 nm but rod-shape $TiO_2$ nanoparticles with lengths of 100 nm were also observed. The refractive index increased with the $TiO_2$ concentration in silicone, while the transmittance decreased with the $TiO_2$ concentration. The light efficient of the LED package with $TiO_2$+silicone encapsulant was higher than that of the LED package with no $TiO_2$ in silicone encapsulant.

Preparation and Characteristics of High Voltage Liquid Silicone Rubber by Modified Cross-linking Agent

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • There is a growing demand for a high voltage silicone rubber composite with high mechanical property and high electrical property. The effect of modified cross-linking agent on the mechanical, electrical properties, and short-circuit test performance of silicone rubber insulators have been investigated. To use base polymer, the various silicone polymers were prepared by the equilibrium polymerization. Aluminum trihydrate surface was treated by vinyl silane. Liquid silicone rubber nanocomposite was prepared from the compounding of VPMPS, HPDMS, catalyst, and alumina trihydrate modified with 1,3,5-trivinyl-l,3,5-trimethylcyclotrisiloxane. The mechanical property and electrical property for insulation materials were measured, indicating the high tensile strength and the good short-circuit property.

Viscous Properties of Epoxy Resin Filled with Rubber Complex-Treated Silica (고무상 복합물로 표면처리 된 실리카를 충전한 에폭시수지의 점성에 관한 연구)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.26 no.4
    • /
    • pp.296-303
    • /
    • 1991
  • Surface of crystalline silica was sequentially reacted with silane(A 187), liquid $rubber(CTBN{\times}8)$, and vinyl monomer(GMA) in existence of TEA(triethylamine) or BPO(benzoyl peroxide). It was mixed with epoxy resin at a ratio $0{\times}60%$ (vol. % ) of total component. For mixtures, viscous properties were investigated experimentally. 1) Coating ratio depended on pH of mixture and quantity of catalyst. 2) Treated silica represented lower viscosity than untreated. 3) Thixotropic index represented best at silica_content $15{\sim}23%$ and showed more large deviation over $120^{\circ}C$. 4) Relative viscosity followed kernel's at $0{\times}10%$ of silica content and get out of Mooney's at more than 15%.

  • PDF

Synthesis, End-Functionalization and Characterization of Hyperbranched Polysiloxysilanes from $AB_3$ Type Monomer

  • Ishida, Yoshihito;Yokomachi, Kazutoshi;Seino, Makoto;Hayakawa, Teruaki;Kakimoto, Masa-aki
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • Hyperbranched polysiloxysilanes (HBPSs), with a variety of terminal functional groups (vinyl, epoxy, carboxyl and hydroxyl), were synthesized by the self-polymerization of an $AB_3$ type monomer of tris(dimethylvinylsiloxy) silane, with subsequent end-functionalizations, such as epoxidation and radical addition reaction, respectively. The ratio of the $\alpha-and$ $\beta-addition$ linkages in the HBPS polymerized by hydrosilylation of the $AB_3$ monomer was found to be approximately 1 to 3. The thermal stability and solubility were affected by the terminal functional groups.

Electrochemical Coating of Amino Silane and Phosphoric Acid Coating on Electro Zinc Plating Steel (아연도금 표면의 아미노실란-인산 피막의 전기화학적 거동)

  • Kim, Yu-Sang;U, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.168-168
    • /
    • 2016
  • 최근 크로메이트 피막의 대체로서 실란 커플링제를 사용한 화성처리가 주목되고 있다. 실란 커플링제는 $R^{\prime}-(CH_2)_n-Si(OR)_3$로 나타내며 OR은 가수분해 가능한 메톡시기, 에톡시기 등의 알콕시기이다. OR기는 가수분해하여 반응성이 높은 시라놀기(-SiOH)를 생성하여 금속표면에 흡착하기 쉽다. 이후, 건조할 때 탈수 축합하여 공유결합이 가능하다. R'는 탄화수소에 한정되지 않고 성질이 다른 원소의 관능기를 나타내며 아미노(amino)기, 글리시딜(glycidyl)기, 멜캅토(melcapto)기, 비닐(vinyl)기를 들 수 있다. 실란 커플링제 가운데 아미노기를 갖는 실란 커플링제는 아연도금 강판을 포함한 다양한 금속의 내식성을 향상시킬 수 있는 화합물의 하나이다. 본 연구에서는 아미노기를 함유한 실란 커플링제에 인산 수용액을 도포하여 수세하지 않고 건조하여 피막을 형성시켰다. 또 부식거동 조사를 목적으로 아미노기를 함유한 실란 커플링제를 사용하여 초산첨가의 경우와 비교하였다.

  • PDF

Conservation Treatment of Sand Stone by Pressurized Impregnation with Acrylic Materials (아크릴계 보존처리제를 이용한 사암의 가압함침 보존처리)

  • Kim, Youn-Cheol;Kim, Sa-Duk;Kim, Hyung-Joong
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.395-401
    • /
    • 2011
  • After pressurized impregnation treatment, which has been proposed as an effective conservation method for stone cultural property, was executed with methyl metacrylate (MMA), MMA-butyl acrylate (PMB73) mixture and MMA-vinyl trimethoxy silane (PMV5) co-monomer mixture, the physical-chemical properties on the sand stone and the granite impregnated were evaluated. Compared to the case of granite, the impregnation ratios of sand stone showed larger values in the range of 3.2 to 3.7 wt% and these were increased up to 32% when the decompression process was applied to autoclave. The physical properties of sand stone such as anti-moisture property, flexural strength, impact property and ultrasonic velocity were also higher values than those of granite, which can be interpreted by high impregnation ratio resulted in many void within sand stone. The impact failure energy was 1.22 J for PMMA, 1.84 J for PMB73, and 2.8 J for PMV5, respectively. Since the inorganic affinity of treatment agent is more effective than the molecular structure of acrylic agent, PMV5 improved inorganic property indicates the optimum impact property.