• Title/Summary/Keyword: Vincent and Briggs irregular wave experiment

Search Result 4, Processing Time 0.015 seconds

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Comparison of Numerical Solutions by TVD Schemes in Simulations of Irregular Waves Propagating over a Submerged Shoal Using FUNWAVE-TVD Numerical Model (FUNWAVE-TVD 수치모형을 이용한 수중천퇴를 통과하는 불규칙파의 수치모의에서 TVD 기법들에 의한 수치해 비교)

  • Choi, Young-Kwang;Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.143-152
    • /
    • 2018
  • Numerical convergence and stability of TVD schemes have been applied in the FUNWAVE-TVD model were compared. The fourth order accurate MUSCL-TVD scheme using minmod limiter suggested by Yamamoto and Daiguji (1993), the fourth order accurate MUSCL-TVD scheme using van-Leer limiter suggested by Erduran et al. (2005) and the second order accurate MUSCL-TVD scheme using van-Leer limiter in Zhou et al. (2001) were compared. Comparisons of the numerical scheme were conducted with experimental data of Vincent and Briggs irregular wave experiments. In comparison with the fourth order accurate scheme using van-Leer limiter, the fourth order accurate scheme using minmod limiter is less dissipative but required lower CFL condition for stable numerical solution. On the other hand, the scheme using van-Leer limiter required smaller resolution spatial grid due to numerical dissipation, but relatively higher CFL condition can be used compared to the scheme using minmod limiter. In the breaking wave experiments which were conducted using high resolution spatial grid to reduce numerical dissipation, the characteristic of the schemes can be clearly observed. Numerical instabilities and blow-up of the numerical solutions were found in the irregular wave breaking simulation with the scheme using minmod limiter. However, the simulation can be completed with the scheme using van-Leer limiter, but required low CFL condition. Good agreements with the observed data were also observed in the results using van-Leer limiter.

Application of Boussinesq Equation Model for the Breaking Wave Behavior around Underwater Shoals (수중 천퇴에서의 쇄파거동 예측을 위한 Boussinesq 방정식 모델의 적용)

  • Chun, In-Sik;Kim, Gui-Dong;Sim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-165
    • /
    • 2006
  • In the present study, a numerical model using Boussinesq equation is set up to predict the interacted equilibrium between waves and their induced currents in the occurrence of breaking waves over an underwater shoal, and the numerical results are compared with results of existing hydraulic experiments. A sensitivity analysis has been done to find out appropriate values of breaking wave parameters with the result (regular wave case) of Vincent and Briggs (1989)’ experiment. Then the numerical model is applied to the irregular wave cases of the experiment and the hydraulic model test of Ieodo which is a natural undersea shoal. The results show that a strong current forms in the wave direction at the downstream side of the shoals, causing the attenuation of wave heights there. The calculated wave heights generally show a similar pattern with the measured data.

Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.557-564
    • /
    • 2007
  • The effect of wave and current interactions on regular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by constituting two numerical model systems: a combination of SWAN(a wave model) plus SHORECIRC(a current model) and a combination of REF/DIF 1(a wave model) plus SHORECIRC. A time dependent phase-resolving wave-current model, FUNWAVE, is also utilized to simulate the experiment. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the two model systems agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. However, it is found that the radiation stresses for standing waves are misevaluated in the wave models. In addition, the results of FUNWAVE show very good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.