• Title/Summary/Keyword: Vignetting

Search Result 23, Processing Time 0.021 seconds

Vignetting Analysis of GOCI Optical System

  • Yeon, Jeoung-Heum;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.195-198
    • /
    • 2007
  • GOCI(Geostationary Ocean Color Imager) is the core paryload of the geostationary satellite COMS(Communication, Ocean and Meteological Satellite) for ocean monitoring. It is scheduled to be launched at the end of 2008. GOCI observes ocean color around the Korean Peninsula over $2500km{\times}2500km$ area. Whole field of view is divided into 16 solts and scan mechanism enables to point each slot position. Tilted two-axis scan method is used to observe entire field of view with great pointing stability. Vignetting of the optical system appears when the partial obscuration by intermediate optical components occurs. It leads to the variation of the illumination in the image and gradual fading near the edge of the field. It should be prohibited for the stable radiometric performances. In this work, vignetting analysis of GOCI optical system is performed. For the systematic approach, GOCI optical system is divided into scan mechanism part and telescope part. Vignetting analysis of each part is performed and each result is combined for the overall vignetting performances. The analyzed results can be applied to the selection of slot acquisition angle of scan mechanism to minimize vignetting effects.

  • PDF

The Off-Axis Properties of Solar X-Ray Telescopes: I. Evaluation of the Vignetting Effect

  • Shin, Jun-Ho;Sakurai, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • The solar X-ray telescopes, the Yohkoh SXT and the Hinode XRT, have observed for a couple of decades a variety of coronal structures in the range of wide field-of-view (FOV) covering the full solar disk. It has been emphasized that the optical structure of solar telescopes should be designed with care for improving the uniformity over the full FOV. The vignetting effect is one of the important optical characteristics for describing the performance of a telescope, which reflects the ability of collecting the incoming light at different locations and different photon energies. The correction of this vignetting effect would be an important calibration step that should be performed in advance, especially when the observed images are to be used for photometric purposes. Since the vignetting effect of solar X-ray telescopes shows wavelength dependence, a special care should be taken when, for example, performing the temperature analyses with thin and thick filters for flaring activities observed at the periphery of the full FOV. The results of analysis of pre-launch calibration data for the evaluation of vignetting effect will be introduced in detail.

  • PDF

Scene-based Nonuniformity Correction for Neural Network Complemented by Reducing Lense Vignetting Effect and Adaptive Learning rate

  • No, Gun-hyo;Hong, Yong-hee;Park, Jin-ho;Jhee, Ho-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.81-90
    • /
    • 2018
  • In this paper, reducing lense Vignetting effect and adaptive learning rate method are proposed to complement Scribner's neural network for nuc algorithm which is the effective algorithm in statistic SBNUC algorithm. Proposed reducing vignetting effect method is updated weight and bias each differently using different cost function. Proposed adaptive learning rate for updating weight and bias is using sobel edge detection method, which has good result for boundary condition of image. The ordinary statistic SBNUC algorithm has problem to compensate lense vignetting effect, because statistic algorithm is updated weight and bias by using gradient descent method, so it should not be effective for global weight problem same like, lense vignetting effect. We employ the proposed methods to Scribner's neural network method(NNM) and Torres's reducing ghosting correction for neural network nuc algorithm(improved NNM), and apply it to real-infrared detector image stream. The result of proposed algorithm shows that it has 10dB higher PSNR and 1.5 times faster convergence speed then the improved NNM Algorithm.

Vignetting Dimensional Geometric Models and a Downhill Simplex Search

  • Kim, Hyung Tae;Lee, Duk Yeon;Choi, Dongwoon;Kang, Jaehyeon;Lee, Dong-Wook
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.161-170
    • /
    • 2022
  • Three-dimensional (3D) geometric models are introduced to correct vignetting, and a downhill simplex search is applied to determine the coefficients of a 3D model used in digital microscopy. Vignetting is nonuniform illuminance with a geometric regularity on a two-dimensional (2D) image plane, which allows the illuminance distribution to be estimated using 3D models. The 3D models are defined using generalized polynomials and arbitrary coefficients. Because the 3D models are nonlinear, their coefficients are determined using a simplex search. The cost function of the simplex search is defined to minimize the error between the 3D model and the reference image of a standard white board. The conventional and proposed methods for correcting the vignetting are used in experiments on four inspection systems based on machine vision and microscopy. The methods are investigated using various performance indices, including the coefficient of determination, the mean absolute error, and the uniformity after correction. The proposed method is intuitive and shows performance similar to the conventional approach, using a smaller number of coefficients.

Processing Underwater Images for Information Extraction of Deep Seabed Manganese Nodules as New Energy Resource (미래 에너지 자원탐사를 위한 수중카메라 영상처리에 의한 심해저 망간단괴 정보추출)

  • Lee, Dong-Cheon;Yun, Seong-Goo;Lee, Young-Wook;Ko, Young-Tak;Park, Cheong-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.679-688
    • /
    • 2009
  • Worldwide exploring and research for manganese nodules, as new energy resource, distributed on the deep seabed have progressed recently. Korea Ocean Research & Development Institute(KORDI) is a central organization to exploit the manganese nodules in the Pacific Ocean with 5,000m depth. Precise exploration is required for estimating amount of recoverable deposit, and this task could be accomplished by processing digital image processing techniques to the images taken by underwater camera system. Image processing and analysis provide information about characteristics of distribution of the manganese nodules. This study proposed effective methods to remove vignetting effect to improve image quality and to extract information. The results show more reliable information could be obtained by removing the vignetting and feasibility of utilizing image processing techniques for exploring the manganese nodules.

Image Restoration for Detecting Muras in TFT-LCD Panels (TFT-LCD 패널의 불량 검출을 위한 영상 복원)

  • Choi, Kyu-Nam;Yoo, Suk-I.
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.953-960
    • /
    • 2007
  • To correctly detect muras, visual defects in TFT-LCD panels, image distortion occurring on the profess of capturing panels should be corrected. In general vision systems, there are several known methods to restore the observed image. However, the vignetting effect particularly shown only in panel images cannot be easily restored through traditional methods because it is combined with background non-uniformity due to the unique characteristic of panel. To increase the reliability of image restoration, the vignetting effect should be properly corrected after being separated from image background. Therefore, in this paper we present a new method to analyze and correct the vignetting effect of panel images using principal component analysis. Experimental results for a total of 175 test images showed that the average contrast error of the muras in the distorted images was reduced from 37% to 11% and the mura misidentification rate was decreased from 14.8% to 2.2% by image restoration.

Omni-directional Image Generation Algorithm with Parametric Image Compensation (변수화된 영상 보정을 통한 전방향 영상 생성 방법)

  • Kim, Yu-Na;Sim, Dong-Gyu
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.396-406
    • /
    • 2006
  • This paper proposes an omni-directional image generation algorithm with parametric image compensation. The algorithm generates an omni-directional image by transforming each planar image to the spherical image on spherical coordinate. Parametric image compensation method is presented in order to compensate vignetting and illumination distortions caused by properties of a camera system and lighting condition. The proposed algorithm can generates realistic and seamless omni-directional video and synthesize any point of view from the stitched omni-directional image on the spherical image. Experimental results show that the proposed omni-directional system with vignetting and illumination compensation is approximately $1{\sim}4dB$ better than that which does not consider the said effects.

Correction of Photometric Distortion of a Micro Camera-Projector System for Structured Light 3D Scanning

  • Park, Go-Gwang;Park, Soon-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • This paper addresses photometric distortion problems of a compact 3D scanning sensor which is composed of a micro-size and inexpensive camera-projector system. Recently, many micro-size cameras and projectors are available. However, erroneous 3D scanning results may arise due to the poor and nonlinear photometric properties of the sensors. This paper solves two inherent photometric distortions of the sensors. First, the response functions of both the camera and projector are derived from the least squares solutions of passive and active calibration, respectively. Second, vignetting correction of the vision camera is done by using a conventional method, however the projector vignetting is corrected by using the planar homography between the image planes of the projector and camera, respectively. Experimental results show that the proposed technique enhances the linear properties of the phase patterns that are generated by the sensor.

Design and Aberration Analysis of Four-Spherical Mirror System Corrected for 4 Aberrations (4개의 수차가 보정된 유한 물체점을 갖는 4-구면 반사경계의 설계 및 수차해석)

  • 김종태;공홍진;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.127-132
    • /
    • 1991
  • We have obtained the analytic solutions of the four spherical mirror system free from the Seidel third order aberratios which are spherical aberration, coma, astigmatism, and distortion, Vignetting. Petzval field curvature, and optical properties according to the design parameters are numerically investigated and optimized. The numerical aperture of this system is 0.2 and the half field angle is $1.5^{\circ}$.

  • PDF

A Low-Complexity Processor for Joint Vignetting and Barrel distortion Correction for Wide-Angle Cameras (광각 카메라를 위한 저 복잡도 비네팅 및 배럴 왜곡 보정 프로세서)

  • Moon, Sun-A;Hong, Jin-U;Kim, Won-Tae;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.36-44
    • /
    • 2015
  • This paper proposes a low-complexity processor to correct vignetting and barrel distortion for wide-angle cameras. The proposed processor calculates the required correcting factors by employing the piecewise linear approximation so that the hardware complexity can be reduced significantly while maintaining correction quality. In addition, the processor is designed to correct the two distortions concurrently in a singular pipeline, which reduces the overall complexity. The proposed processor is implemented with 18.6K logic gates in a $0.11{\mu}m$ CMOS process and shows the maximum correction speed of 200Mpixels/s for correcting an image of which size is $2048{\times}2048$.