• 제목/요약/키워드: View based 3-D Object Retrieval

검색결과 4건 처리시간 0.019초

효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법 (Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation)

  • 탁윤식;황인준
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

2차원 모양 정보를 이용한 3차원 물체 검색 시스템 (3D Object Retrieval System Using 2D Shape Information)

  • 임삼;추현곤;최민석;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, we propose a new 3D object retrieval system using the shape information of 2D silhouette images. 2D images at different view points are derived from a 3D model and linked to the model. Shape feature of 2D image is extracted by a region-based descriptor. In the experiment, we compare the results of the proposed system with those of the system using curvature scale space(CSS) to show the efficiency of our system.

  • PDF

시점별 형상의 지역적 선형 사상을 통한 3차원 물체의 특성 분석 (An Analysis of 3-D Object Characteristics Using Locally Linear Embedding)

  • 이수찬;윤일동
    • 방송공학회논문지
    • /
    • 제14권1호
    • /
    • pp.81-84
    • /
    • 2009
  • 본 논문은 시점에 따른 형상의 변화를 이용하여 물체의 특성을 나타내는 기법을 제안한다. 구체적으로, 3차원 물체의 여러 시점별 형상을 추출한 후, 이를 지역적 선형 사상을 통해 차원 축소하여 저차원 분포를 생성하고, 이를 이용하여 물체의 특성을 나타낸다. 또한, 생성된 점집합들에 반복적 최근접점 기법 및 푸리에 변환을 적용하여 유사한 모델을 검색하는 기법과 그 결과를 제시한다. 제안하는 기법은 다양한 시점에서의 형상 자체만이 아니라 시점에 따른 형상의 변화도 물체의 특성을 표현한다는 것을 보여주며, 검색 등 물체 특성을 표현하는데 적용될 것으로 기대된다.

검색과 분류를 위한 친근도 전파 기반 3차원 모델의 특징적 시점 추출 기법 (Selecting Representative Views of 3D Objects By Affinity Propagation for Retrieval and Classification)

  • 이수찬;박상현;윤일동;이상욱
    • 방송공학회논문지
    • /
    • 제13권6호
    • /
    • pp.828-837
    • /
    • 2008
  • 본 논문은 단일 3차원 모델과 모델의 클래스의 특징적인 시점을 추출하여 3차원 모델 검색 및 분류를 수행하는 기법을 제안한다. 제안하는 기법은 3차원 모델을 투영한 2차원 형상 중에 특징적인 형상을 추출하는데, 이때 고르게 샘플(sample)된 형상들을 최근 개발된 친근도 전파 (affinity propagation) 기법을 이용하여 군집화(clustering)한다. 친근도 전파는 데이터를 군집화하는 동시에 각 클러스터의 대표 값을 계산하므로, 군집화된 형상들로부터 대표 형상이 자연스럽게 지정된다. 제안하는 기법은 친근도 기법을 클래스별로 각 모델의 대표 형상 집합에 재차 적용하여 클래스의 대표 형상을 추출하고, 이를 기반으로 하여 3차원 모델의 분류도 가능하게 한다. 3차원 모델의 검색 뿐 아니라 분류를 가능하게 함으로써, 분류를 검색의 전처리 과정으로 하여 연관된 클래스의 모델 중에서만 검색을 수행할 수 있게 하여 단위가 큰 데이터베이스에서도 효율적인 검색을 가능하게 한다. [16]에 제안된 프린스턴 벤치마크 데이터베이스(Princeton benchmark database)을 이용한 실험을 통해 제안하는 검색 및 분류 기법의 유용함을 보인다.