• 제목/요약/키워드: Videogrammetry

검색결과 3건 처리시간 0.016초

An integrated visual-inertial technique for structural displacement and velocity measurement

  • Chang, C.C.;Xiao, X.H.
    • Smart Structures and Systems
    • /
    • 제6권9호
    • /
    • pp.1025-1039
    • /
    • 2010
  • Measuring displacement response for civil structures is very important for assessing their performance, safety and integrity. Recently, video-based techniques that utilize low-cost high-resolution digital cameras have been developed for such an application. These techniques however have relatively low sampling frequency and the results are usually contaminated with noises. In this study, an integrated visual-inertial measurement method that combines a monocular videogrammetric displacement measurement technique and a collocated accelerometer is proposed for displacement and velocity measurement of civil engineering structures. The monocular videogrammetric technique extracts three-dimensional translation and rotation of a planar target from an image sequence recorded by one camera. The obtained displacement is then fused with acceleration measured from a collocated accelerometer using a multi-rate Kalman filter with smoothing technique. This data fusion not only can improve the accuracy and the frequency bandwidth of displacement measurement but also provide estimate for velocity. The proposed measurement technique is illustrated by a shake table test and a pedestrian bridge test. Results show that the fusion of displacement and acceleration can mitigate their respective limitations and produce more accurate displacement and velocity responses with a broader frequency bandwidth.

DISTANCE MEASUREMENT IN THE AEC/FM INDUSTRY: AN OVERVIEW OF TECHNOLOGIES

  • Jasmine Hines;Abbas Rashidi;Ioannis Brilakis
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.616-623
    • /
    • 2013
  • One of the oldest, most common engineering problems is measuring the dimensions of different objects and the distances between locations. In AEC/FM, related uses vary from large-scale applications such as measuring distances between cities to small-scale applications such as measuring the depth of a crack or the width of a welded joint. Within the last few years, advances in applying new technologies have prompted the development of new measuring devices such as ultrasound and laser-based measurers. Because of wide varieties in type, associated costs, and levels of accuracy, the selection of an optimal measuring technology is challenging for construction engineers and facility managers. To tackle this issue, we present an overview of various measuring technologies adopted by experts in the area of AEC/FM. As the next step, to evaluate the performance of these technologies, we select one indoor and one outdoor case and measure several dimensions using six categories of technologies: tapes, total stations, laser measurers, ultrasound devices, laser scanners, and image-based technologies. Then we evaluate the results according to various metrics such as accuracy, ease of use, operation time, associated costs, compare these results, and recommend optimal technologies for specific applications. The results also revealed that in most applications, computer vision-based technologies outperform traditional devices in terms of ease of use, associated costs, and accuracy.

  • PDF

Measurement of rivulet movement and thickness on inclined cable using videogrammetry

  • Jing, Haiquan;Xia, Yong;Xu, Youlin;Li, Yongle
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.485-500
    • /
    • 2016
  • Stay cables in some cable-stayed bridges suffer large amplitude vibrations under the simultaneous occurrence of rain and wind. This phenomenon is called rain-wind-induced vibration (RWIV). The upper rivulet oscillating circumferentially on the inclined cable surface plays an important role in this phenomenon. However, its small size and high sensitivity to wind flow make measuring rivulet size and its movement challenging. Moreover, the distribution of the rivulet along the entire cable has not been measured. This paper applies the videogrammetric technique to measure the movement and geometry dimension of the upper rivulet along the entire cable during RWIV. A cable model is tested in an open-jet wind tunnel with artificial rain. RWIV is successfully reproduced. Only one digital video camera is employed and installed on the cable during the experiment. The camera records video clips of the upper rivulet and cable movements. The video clips are then transferred into a series of images, from which the positions of the cable and the upper rivulet at each time instant are identified by image processing. The thickness of the upper rivulet is also estimated. The oscillation amplitude, equilibrium position, and dominant frequency of the rivulet are presented. The relationship between cable and rivulet variations is also investigated. Results demonstrate that this non-contact, non-intrusive measurement method has good resolution and is cost effective.