코로나19 대유행으로 비대면 교육이 보편화되어 온라인 학습과 시험이 교육기관에서 일반화되고 있다. 이러한 급격한 변화로 교육의 공정성 문제와 온라인 시험의 부정행위 문제가 대두되고 있다. 온라인 시험은 대면 시험과는 달리 시험 감독관이 부정행위를 적발하기 어렵기 때문에 응시자의 다양한 환경을 고려하여 정확하게 부정행위를 판별하는 방법이 필요하다. 본 연구에서는 온라인 시험환경에서 응시자의 행동 데이터와 영상데이터를 분석하여 부정행위를 감독관에게 추천하는 시스템을 제안한다. 제안 시스템의 구현을 통해 온라인 시험 환경에서 부정행위를 탐지 기능을 확인한다.
공공 안전을 위한 영상 감시 시스템이 증가함에 따라 CCTV 관제사가 관제해야 할 영상의 수가 증가하고 있다. 점점 증가하는 관제 영상 수로 인해 CCTV 관제사는 수많은 영상 사이에서 발생하는 살인, 강도, 폭력 등 위급한 이상 상황을 놓치는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 최근에는 영상에서 발생하는 이상 상황을 자동으로 탐지하고 CCTV 관제사에게 알려 관제 효율을 향상시키는 연구가 진행되고 있다. 본 논문은 영상에서 발생하는 이상 상황을 자동으로 탐지하기 위해 예측 기반 이상 탐지 방법에 다중 프레임 예측 에러를 활용해서 영상 이상 탐지 정확도를 향상시키는 방법을 제안한다. 결과적으로 제안한 방법을 사용함으로써 프레임 레벨 AUC가 Ped2 데이터 셋에서 92.70%에서 94.56%, Avenue 데이터셋에서 87.37%에서 89.17%로 상승하였다.
International conference on construction engineering and project management
/
2015.10a
/
pp.304-309
/
2015
On construction sites, it is important to monitor the performance of construction equipment and workers to achieve successful construction project management; especially, vision-based detection methods have advantages for the real-time site data collection for safety and productivity analyses. Although many researchers developed vision-based detection methods with acceptable performance, there are still limitations to be addressed: 1) sensitiveness to the shape and appearance changes of moving objects in difference working postures, and 2) high computation time. To deal with the limitations, this paper proposes a detection algorithm of construction equipment based on Integral Channel Features. For validation, 16,850 frames of video streams were recorded and analyzed. The results showed that the proposed method worked in high performance in terms of accuracy and processing time. In conclusion, the developed method can help to understand useful site information including working pattern, working time and input manpower analyses.
생체 신호를 분석하여 사용자의 건강과 정신 상태를 예측하고, 관련 질병에 관해 예방하는 연구가 늘어나고 있다. 생체 신호 중 심박은 사람의 육체, 정신적인 상태를 반영하는 대표적인 신호이지만 기존의 접촉 패드를 통한 ECG나 광학 센서를 통한 PPG로 심박을 예측할 때는 구속적인 환경이 필요하여 일상적인 상황 속에 적용하기 어려웠다. 이러한 단점을 해결하고자 본 논문은 UBFC-RPPG 데이터셋의 동영상 프레임을 RGB 채널마다 다른 가중치를 적용하는 전처리를 하여 학습 데이터의 크기를 줄이면서 정확도를 높이고, 3D-CNN을 활용한 딥러닝으로 순간적인 영상에서도 PPG 신호를 예측할 수 있도록 1초 전처리 영상을 학습한 후, 신호를 예측하는 것을 목표로 한다. 이렇게 비접촉식으로 취득된 신호는 더 다양한 환경에서의 감정분류, 우울증 진단, 질병 감지 등 다양한 분야에 활용될 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.693-694
/
2023
본 논문에서는 FastText 알고리즘을 기반으로 한 사용자 지정 키워드 기반 동영상 요약 시스템을 제안한다. 사용자가 키워드를 입력하면 시스템은 해당 키워드와 관련된 단어들을 FastText를 통해 추출하며, 이를 STT (Speech-to-Text)로 변환된 동영상에서 타임 스탬프 기반으로 인식한다. 인식된 키워드와 관련된 내용은 클립 형식으로 요약되어 사용자에게 제공된다. 본 연구의 목적은 숏폼 콘텐츠 환경에서 효과적인 콘텐츠 추출 및 제공을 통해 사용자 경험과 정보 제공의 효율성을 향상시키기 위함이다. 제안된 시스템은 사용자 지정 키워드에 맞춰 다양한 동영상 플랫폼에서 효율적인 영상 요약을 제공함으로써 온라인 동영상 환경에서 큰 혁신을 이끌어낼 것으로 기대된다.
Eun-Gyeom Jang;Young-Gi Heo;Ho-Geun Byeon;Jeong-Min Lee
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.431-432
/
2023
본 연구는 초상권을 보호할 수 있는 실시간 영상 모자이크 서비스이다. 실시간 모자이크 서비스에서는 모자이크 처리를 제외하기 위한 이용자 얼굴 등록 기능을 갖고 있다. 이렇게 등록된 얼굴정보는 실시간 영상 스티리밍 서비스에서 모자이크가 되지 않도록 한다. 즉, 모자이크를 원하지 않는 정보를 미리 시스템에 등록하여 실시간 서비스에 어떠한 부분을 모자이크에서 제외 할 것인지 세팅하여 실시간 스트리밍 서비스를 제공한다. 기존 기술과의 차이점은 사람의 얼굴뿐만 아니라 방송에 나오면 안 되는 흉기나 담배 등을 모자이크 처리해 줄 수 있는 기능을 제공하고, 실시간으로 모자이크된 영상 스트리밍 서비스를 제공할 수 있는 장점을 갖는다.
Wonho Lee;Jungyu Kang;Nayoung Seong;Suhyeon Cho ;Youngjong Kim
Annual Conference of KIPS
/
2023.05a
/
pp.694-695
/
2023
최근 ChatGPT 를 각 분야에 활용하는 연구가 활발하게 이루어지고 있다. ChatGPT 는 최신 자연어 처리 모델로, 텍스트를 통해 입출력을 진행한다. 본 논문에서는 이러한 ChatGPT 를 활용하여 영상을 효과적으로 요약할 수 있는 새로운 접근 방식을 제시한다. STT 기술을 사용하여 영상의 자막에 대한 텍스트 파일을 추출하고 이를 ChatGPT 로 요약한다. 최종적으로 기존 텍스트와의 유사도 분석을 통해 유사도가 높은 부분을 선택하여 영상을 편집하고 요약한다.
동영상의 다중 물체 인식 및 추적은 의료영상이나 무인 주행 시스템 등의 응용분야에서 중요성이 높아지고 있다. 본 논문에서는 스포츠 동영상의 다중 물체를 인식 및 추적하기 위해 칼만필터 알고리즘을 사용한다. 칼만필터 알고리즘을 이용한 물체의 이동 궤적 관리를 통해 표적 겹침 현상에 대한 추적 실패를 극복하도록 하였다. 표적 겹침이 일어나는 동영상을 입력 영상으로 이용하여 제안한 실시간 시뮬레이터의 추적 성능을 분석하였다.
장면 전환 검출은 대용량 비디오 데이터의 효과적인 관리를 위해서 사용되는 기술로서 현재까지 비디오 프레임의 크기를 대폭 축소시킨 환경에서의 연구는 미미하다. 따라서 본 논문에서는 비디오 프레임의 최소 화소를 이용한 장면 전환 검출 기술을 제안한다. 장면 전환 검출을 위한 특징값 추출 요소로 가중치 분산을 사용하였고, 가변 구간 참조를 통한 적응적인 임계값을 설정하였다. 실험을 통해서 기존의 방법들보다 precision에서 2~20.4%, recall에서 3~18.2%, F1에서 1.1~19.3% 향상된 것을 확인하였고, 비디오 데이터 화소수를 1/256로 축소하여 실험한 결과 기존의 방법들보다 검출률이 월등하게 향상된 것을 알 수 있었다. 제안하는 방법은 계산량 감소를 통한 고속 처리를 가능하게 하여 다양한 소프트웨어 및 하드웨어 플랫폼에서의 고속 장면 전환 검출에 유용하게 사용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.