Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.201-202
/
2022
본 논문에서는 VVC(Versatile Video Coding)의 화면 내 예측 수행 시 픽처의 좌측 상단 블록에서 고정적으로 Planar 를 사용하도록 하여 부호화 성능을 향상시킬 수 있는 방법을 제안한다. VVC 의 화면 내 예측 기술은 픽처의 좌측 상단 블록의 참조 화소가 모두 패딩되어 동일한 값을 가짐에도 불구하고 다른 블록들과 동일하게 화면 내 예측모드를 탐색 및 신호하는 비효율성을 갖는다. 본 논문에서는 이 경우 화면 내 예측 모드에 관한 탐색과 신호를 생략하고 고정적으로 Planar 모드를 사용하도록 하고, 실험을 통하여 VTM-16.0 대비 BDBR(Bjøntegaard Delta Bit Rate) 측면에서 AI(All Intra) 구성하에 Y(-0.004%), Cb(-0.010%), Cr(0.023%)의 결과를 얻을 수 있음을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1245-1248
/
2022
본 논문에서는 사용자가 보다 간편하게 볼류메트릭 비디오를 소비할 수 있도록 볼류메트릭 비디오 기본 플레이어를 구현하고, 구현한 플레이어에 대하여 성능평가를 진행한다. 본 논문에서 구현한 볼류메트릭 비디오 플레이어는 Draco 와 V-PCC 를 복호화기로 지원하며, 압축 전의 포인트 클라우드 데이터와 Draco 와 V-PCC 로 압축한 비트스트림에 대하여 성능 평가를 진행하였다. 플레이어의 성능을 평가한 결과를 통해 초기 충분한 량의 프레임을 버퍼에 확보할 만큼의 초기 지연시간을 설정하지 않는 이상, 볼류메트릭 비디오를 30fps 이상으로 소비하기에는 어려움이 있음을 확인하였다. 이를 토대로 현재 볼류메트릭 비디오 재생을 위한 기술적 한계를 살펴보고, 볼류메트릭 비디오 플레이어의 성능 향상을 위한 향후 연구개발 방향에 대하여 논의한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1239-1240
/
2022
JVET 은 VVC(Versatile Video Coding) 표준화 완료 이후 보다 높은 압축 성능을 갖는 차세대 비디오 코덱의 표준 기술을 탐색하고 있으며 ECM(Enhanced Compression Model) 참조 소프트웨어를 통해 제안된 알고리즘의 성능을 검증하고 있다. 현재 ECM 에서는 정해진 순서에 의해 병합(Merge) 후보를 구성하고 템플릿 매칭(template matching)을 통하여 후보들의 순서를 재배열하는 ARMC(Adaptive Reordering of Merge Candidate) 기법을 채택하고 있다. 본 논문은 ARMC 의 병합 후보의 선택 빈도 분석을 바탕으로 정규 병합(regular merge) 후보 수를 확장하여 구성하고, 실제 탐색에 사용되는 최종 후보의 수를 제한하는 효율적인 ARMC 후보 구성 기법을 제안한다. 실험결과 ECM 4.0 대비 Cb 와 Cr 에서 0.12%, 0.19% 비디오 부호화 성능을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.184-185
/
2022
인터넷 환경의 변화에 따라 텍스트 기반의 정보 전달에서 멀티미디어 기반의 스트리밍 방식으로 바뀌어가고 있다. 또한 대용량의 동영상 데이터뿐 아니라 Shorts, Clip Reels 또는 등 다양한 방식의 동영상 형태로 배포되고 있으며 서비스 플랫폼에서는 손쉽게 편집할 수 있도록 기능을 제공하고 있다. 대용량 콘텐츠, TV, Youtue 콘텐츠를 포함하여 소용량 동영상 편집에 필요한 영상 제작 기술에서 가장 인력과 시간이 많이 소요되는 부분은 편집 단계로 딥러닝 기반 인공지능 기술을 활용하여 자동화하고 있으며 영상편집에서 가장 기본이 되는 단위인 씬검출 기법을 개발하였다. 키프레임 검출 기법과 유사도 기법을 이용하여 씬을 추출하였으며 블록 Cost Function을 이용하여 최적화하여 0.5214의 정확도를 도출하였다.
Park, Jung-Tak;Lee, Sol;Park, Byung-Seo;Seo, Young-Ho
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.248-249
/
2022
In this paper, we propose a method for classifying and tracking objects based on information of multiple users obtained using RGB-D cameras. The 3D information and color information acquired through the RGB-D camera are acquired and information about each user is stored. We propose a user classification and location tracking algorithm in the entire image by calculating the similarity between users in the current frame and the previous frame through the information on the location and appearance of each user obtained from the entire image.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.214-216
/
2022
비디오 프레임 보간 기술은 시간 해상도를 증가시키는 기술로 최근 Convolutional Neural Network(이하 CNN) 기반의 다양한 연구가 진행되고 있다. 하지만 일부 시각에서는 CNN 기반의 연구가 동일한 커널을 모든 화소에 적용하는 것과 객체의 움직임을 예측하기 위해 장기간의 데이터를 활용하는 것에 한계점이 있다고 주장한다. 이에 따라 장기간의 데이터 활용에 특화된 트랜스포머 기반의 비디오 프레임 보간 기술이 제안되었다. 본 논문에서는 트랜스포머 기반의 기존 연구에서 합성 네트워크의 성능을 향상시키기 위해 광학 흐름 안내 기반의 새로운 학습 방법을 제안한다 실험 결과를 통해 평균 PSNR 0.09dB와 SSIM 0.0031 성능 향상을 확인한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.146-149
/
2022
기존 RDO(Rate Distortion Optimization) 기반 압축 방식은 압축 성능에 초점을 두기 때문에 영상 내 인지 특성이 무시될 수 있다. 따라서 RoI(Region of Interest)을 기반으로 압축률을 조절하는 연구가 고안[1, 2, 3, 4] 되었으며, HVS(Human Visual System) 관점에서 영상 내 중요한 부분에 대해 더 높은 품질로 영상을 압축하는 연구가 대부분이다. 최근 인공지능 기술이 발전함에 따라 지능형 영상 분석에 대한 수요가 증가하고 있으며, 이에 따라 머신 비전을 위한 영상 부호화 및 효율적인 전송에 대한 필요성이 대두되고 있다. 본 논문에서는 VVC(Versatile Video Coding)의 dQP(delta Quantization Parameter)를 활용하여 RoI(Region of Interest) 기반압축 방법을 제안하고, 두가지의 RoI 추출 방식을 소개한다. Detectron2 Faster R-CNN X101-FPN [5]의 첫번째 탐지기를 통해 후보 영역 기반 RoI 을 추출하고, 두번째 탐지기를 통해 객체 기반 RoI 을 추출하여, 영상 내 객체 부분과 비객체 부분으로 나누어 서로 다른 압축률로 압축을 수행하였으며, 이에 따른 성능을 비교하고자 한다.
Kim, Dong-Ha;Yoon, Yong-Uk;Lee, Jooyoung;Jeong, Se-Yoon;Kim, Jae-Gon;Jeong, Dae-Gwon
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.143-145
/
2022
MPEG-VCM(Video Coding for Machine)은 입력된 비디오 특징(feature)를 압축하는 Track1 과 입력 영상을 직접 압축하는 Track2 로 나뉘어 표준화가 진행중이다. 본 논문은 VCM Track 1 에 해당하는 Detectron2 FPN(Feature Pyramid Network)에서 추출한 다중 스케일 특징맵을 VVC 로 압축하는 MSFC(Multi-Scale Feature Compression)을 구조를 제안한다. 본 논문의 MSFC 에서는 다중 스케일 특징을 결합하여 부호화/복호화하는 기존의 구조에서 특징맵의 해상도를 줄여 압축하는 개선된 MSFC 를 제시한다. 제안 방법은 VCM 의 Track2 의 영상 앵커(image anchor) 보다 우수한 BPP-mAP 성능을 보이고 최대 -84.98%의 BD-rate 성능향상을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.197-198
/
2022
Versatile Video Coding (VVC)는 차세대 동영상 압축 표준화 과정에서 다수의 부호화 기술을 새롭게 채택하였는데, 이중 Multiple Reference Lines (MRL)을 포함한 일부 기술은 휘도 채널에만 적용될 수 있으며 색차 성분에 대해서는 적용이 고려되지 않는다. 본 논문은 VVC 에서 휘도 채널에만 적용되는 MRL 기술을 색차 채널로 확장하기 위하여, DM(Derived Mode)을 사용하는 색차 블록의 대응 휘도 블록이 MRL 을 사용하는 경우에 해당 참조 라인을 선택적으로 공유하여 색차 블록이 화면 내 예측에 복수개의 참조 라인을 고려하여 선택할 수 있도록 하는 방법을 제안한다. 실험 결과, VVC Test Model (VTM) 15.0 대비 Cb, Cr 성분 각각 -0.09%, -0.05%의 성능 향상을 보인다.
본 논문에서는 미생 드라마 비디오들을 토대로 구축한 비디오 인물 개체 분할 데이터 집합인 MHIS를 소개하고, 등장인물 클래스 간의 심각한 데이터 불균형 문제를 효과적으로 해결하기 위한 새로운 비디오 데이터 보강 기법인 CDVA를 제안한다. 기존의 비디오 데이터 보강 기법들과는 달리, 새로운 CDVA 보강 기법은 비디오의 시공간적 맥락을 충분히 고려해서 부족한 인물 클래스의 훈련 비디오 데이터들을 추가 생성함으로써, 비디오 개체 분할 신경망 모델의 성능을 효과적으로 개선시킬 수 있다. 본 논문에서는 정량 및 정성 실험들을 통해, 제안 비디오 데이터 보강 기법의 우수성을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.