Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.123-126
/
2020
딥러닝이 정답을 찾아가는 연구과정이라면 미술은 정답이나 오답의 단정적 결과보다는 미추(아름다움과 추함)를 포함하는 과정적, 창조적 행위에 가깝다고 할 수 있다. 다시 말하면 미술은 0과 1로만 환원할 수 없는 세계를 기술하여 감동을 주는 유기적 규칙이 내재되어 있고 때로는 과학이 만들어낸 결론을 뒤집는 반상식적 추론을 하기도 한다. 그러므로 딥러닝은 예술적 방식을 통하여 과학의 상식적 추론과의 좋은 거리(Fine distance)를 유지할 필요성이 있는데, 이를 위해서 기존 딥러닝의 이미지 생성과 관련하여 Distance, Classification, Optimization 등의 문제를 미술 표현 기법과 목적이 담겨있는 창작자의 Statement 키워드와의 유사성과 차이점을 비교 분석할 필요가 있다고 생각한다. 시각적 표현과 관련된 딥러닝의 성능은 아직 사람의 표현능력에 못 미치고 있어 본 논문에서는 콜라주 기법에 의한 비디오 생성을 위한 탐색적 실험 분석을 목적으로 GAN을 활용한 콜라주 비디오를 제작하고 그 문제점과 개선점을 제안하고자 한다.
Park, Minsoo;Park, Min Woo;Choi, Kiho;Piao, Yinji;Choi, Kwang Pyo
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.162-165
/
2020
본 논문에서는 차세대 비디오 압축 표준인 MPEG-5 Essential Video Coding (EVC) 에서 사용된 블록 분할 방식에 대해서 소개한다. EVC 에서 사용된 블록 분할 방식은 기존 비디오 압축 표준인 HEVC/H.265 에서 사용된 쿼드 트리(Quad-tree)가 아닌 이진 분할(Binary split)과 삼진 분할(Ternary split)을 사용한 Binary ternary tree(BTT) 기술을 사용하고 있다. 또한 기존 비디오 압축 기술과 달리 분할된 블록의 코딩 순서를 정해서 사용 할 수 있는 Split unit coding order (SUCO) 기술이 사용되고 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.280-282
/
2020
최근 사물인터넷(IoT), 자율주행과 같이 기계 간의 통신이 요구되는 서비스가 늘어감에 따라, 기계 임무 수행에 최적화된 데이터의 생성 및 압축에 대한 필요성이 증가하고 있다. 또한, 사물인터넷과 인공지능(AI)이 접목된 기술이 주목을 받으면서 딥러닝 모델에서 추출되는 특징(feature)을 디바이스에서 클라우드로 전송하는 방안에 관한 연구가 진행되고 있으며, 국제 표준화 기구인 MPEG에서는 '기계를 위한 부호화(Video Coding for Machine: VCM)'에 대한 표준 기술 개발을 진행 중이다. 딥러닝으로 특징을 추출하는 가장 대표적인 방법으로는 합성곱 신경망(Convolutional Neural Network: CNN)이 있으며, 오토인코더는 입력층과 출력층의 구조를 동일하게 하여 출력을 가능한 한 입력에 근사시키고 은닉층을 입력층보다 작게 구성하여 차원을 축소함으로써 데이터를 압축하는 딥러닝 기반 이미지 압축 방식이다. 이에 본 논문에서는 이러한 오토인코더의 성질을 이용하여 CNN 기반의 이미지 분류 네트워크의 합성곱 신경망으로부터 추출된 feature에 오토인코더를 적용하여 압축하는 방안을 제안한다.
Park, Seonguk;Lee, Haelim;Lee, Jooyoung;Jeong, Se-Yoon;Cho, Seunghyun
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.172-175
/
2020
최근 스마트시티, 자율 주행 자동차 등 기계에 의해 소비되는 영상 데이터의 양이 증가함에 따라 기계의 임무 수행 능력을 향상시킬 수 있는 압축기술이 필요하게 되었다. 그런데, 전통적 방식의 영상 코덱은 사람의 인지 화질 특성을 고려해 개발된 기술이기 때문에 기계의 임무 수행에 필수적인 정보 외에도 불필요한 정보가 존재한다. 따라서 사람이 아닌 기계의 임무 수행에 대해 효율적으로 영상을 압축하기 위한 비디오 코덱 기술이 필요하다. 이와 관련하여, 최근 MPEG에서 Video Coding for Machines라는 영상 압축기술에 대한 표준화가 논의되고 있다. 본 논문에서는 기계를 위한 영상 압축기술의 연구배경과 연구를 통해 전통적인 영상 압축 코덱 방식과 neural network 기반 압축 코덱 방식에 대해 각각의 방식이 머신비전 임무를 수행한 정확도를 기준으로 영상 압축성능을 비교해 효율적인 압축 코덱 방식에 대해 분석한다.
Kim, Woosuk;Kim, Jin-Kyum;Kim, Kyung-Jin;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.37-38
/
2020
본 연구에서는 홀로그램을 현대의 멀티미디어로써 효율적으로 사용하기 위해 필요한 홀로그램 압축 실험으로써 위상 홀로그램에 대한 압축 실험을 진행하였다. 포인트 클라우드로부터 생성한 여러 시점의 정보로 비디오 홀로그램을 생성하였다. 압축실험에선 원래의 홀로그램과 위상 펼침(Phase unwrapping) 방법을 통해 변환된 홀로그램을 비교하며, 동일한 압축률에선 심각한 성능하락은 없었으며, 동일한 QP(Quantization parameter)에선 더 높은 압축률을 보였다.
배달 애플리케이션과 지도 애플리케이션의 발달은 가게 이용에 많은 편리함을 가져왔지만, 푸드트럭, 포장마차와 같은 길거리 점포는 이러한 혜택의 사각지대로 이용에 많은 불편함이 남아있다. 이에 본 논문에서는 길거리 점포의 특성에 맞춘 위치기반 점포 관리 및 정보 제공애플리케이션을 설계하였다. 이에 이용자들이 보다 편리하게 길거리 점포를 이용할 수 있게 되기를 기대한다.
본 논문에서는 구면 파노라마를 기반으로 하는 SLAM 시스템을 제안한다. Vision SLAM은 촬영하는 시야각이 넓을수록 적은 프레임으로도 주변을 빠르게 파악할 수 있고, 많은 양의 주변 데이터를 이용해 더욱 안정적인 추정이 가능하다. 구면 파노라마 비디오는 가장 화각이 넓은 영상으로, 모든 방향을 활용할 수 있기 때문에 Fisheye 영상보다 더욱 빠르게 3D 맵을 확장해나갈 수 있다. 기존의 시스템 중 Fisheye 영상을 기반으로 하는 시스템은 전면 광각만을 수용할 수 있기 때문에 구면 파노라마를 입력으로 하는 경우보다 적용 범위가 줄어들게 된다. 본 논문에서는 기존에 Fisheye 비디오를 기반으로 하는 SLAM 시스템을 구면 파노라마의 영역으로 확장하는 방법을 제안한다. 제안 방법은 카메라의 투영 모델이 요구하는 파라미터를 정확히 계산하고, Dual Fisheye Model을 통해 모든 시야각을 손실 없이 활용한다.
Do, Jihoon;Lee, Jooyoung;Kim, Younhee;Choi, Jin Soo;Jeong, Se Yoon
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.7-9
/
2021
본 논문은 Detectron2 [1]에서 지원하는 객체 검출 임무 수행 네트워크의 과정 중에서 추출한 피쳐 맵을 신경망 기반으로 압축하는 방법을 제안한다. 이를 위해, 신경 망 기반 영상 압축을 지원하는 공개 소프트웨어인 CompressAI [2] 모델 중 하나인 bmshj2018-hyperprior 의 압축 네트워크를 활용하여 임무 수행 네트워크의 과정 중 스탬 레이어(stem layer)에서 추출된 피쳐 맵을 압축하도록 학습시켰다. 또한, 압축 네트워크의 입력 피쳐 맵의 너비와 높이 크기가 64 의 배수가 되도록 객체 검출 네트워크의 입력 영상 보간 값을 조정하는 방법도 제안한다. 제안하는 신경망 기반 피쳐 맵 압축 방법은 피쳐 맵을 최근 표준이 완료된 차세대 압축 표준 방법인 VVC(Versatile Video Coding, [3])로 압축한 결과에 비해 큰 성능 향상을 보이고, VCM 앵커와 유사한 성능을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.279-282
/
2021
포인트 클라우드는 3 차원 물체를 표현하기 위한 점들의 집합으로, 동적인 3 차원 데이터를 정밀하게 획득할 수 있기에 이의 효율적인 압축의 필요성이 대두되고 있다. 기존 3D DCT(3D Discrete Cosine Transform)를 이용한 동적 객체의 포인트 클라우드 압축 방식은 Inter 프레임 압축을 고려하지 않아 압축시의 데이터 압축률에 한계가 있다. 따라서 본 논문은 이러한 문제점을 개선하기 위해 3D DCT 를 이용한 움직임 예측을 통하여 포인트 클라우드 영상의 I 프레임 및 P 프레임을 압축하는 방식을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.16-18
/
2021
미디어 기술은 사용자가 더욱 몰입감을 느낄 수 있는 방향으로 개발되어 왔다. 이러한 흐름에 따라 기존의 2D 이미지에 비해 깊이감을 느낄 수 있는 증강 현실, 가상 현실 등 3D 공간 데이터를 활용하는 미디어가 주목을 받고 있다. 포인트 클라우드는 수많은 3차원 좌표를 가진 여러 개의 점들로 구성된 데이터 형식이므로 각각의 점들에 대한 좌표 및 색상 정보를 사용하여 3D 미디어를 표현한다. 고정된 크기의 해상도를 갖는 2D 이미지와 다르게 포인트 클라우드는 포인트의 개수에 따라 용량이 유동적이며, 이를 기존의 비디오 코덱을 사용하여 압축하기 위해 국제 표준기구인 MPEG(Moving Picture Experts Group)에서는 Video-based Point Cloud Compression (V-PCC)을 제정하였다. V-PCC는 3D 포인트 클라우드 데이터를 직교 평면 벡터를 이용하여 2D 패치로 분해하고 이러한 패치를 2D 이미지에 배치한 다음 기존의 2D 비디오 코덱을 사용하여 압축한다. 본 논문에서는 앞서 설명한 2D 패치 이미지에 super resolution network를 적용함으로써 3D 포인트 클라우드의 성능 향상하는 방안을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.