파티클 필터는 비선형 비가우시안 추정 문제에 매우 효과적인 수단으로 비디오 영상에서 객체를 추적하는 경우에 널리 이용되어왔다. 하지만 객체의 이동이 심한 경우 객체의 추적을 위해서는 매우 많은 개수의 파티클이 있어야 하므로 계산량이 크게 증가하게 된다. 본 논문에서는 프레임간의 객체 이동이 상당히 크게 이루어지는 low frame rate(LPR) 비디오에서 차량의 추적을 위하여 모션 벡터를 이용한 개선된 파티클 필터 추적 방법을 제안하고 실험을 통하여 성능을 평가하였다. 제안한 파티클 필터에서는 selection 단계와 observe 단계의 두 단계에서 모션 벡터를 적용하였다. 실험 결과 제안한 방법은 LPR 영상에서 기존의 파티클 필터가 객체의 추적에 실패하는 경우에도 성공적 추적이 가능하며, 추적의 정확도 또한 향상되었음을 보여주었다.
Do, Luu Ngoc;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Na, In Seop;Kim, Sun Hee
International Journal of Contents
/
제10권1호
/
pp.1-11
/
2014
In the current generation of smart mobile devices, object tracking is one of the most important research topics for computer vision. Because human face tracking can be widely used for many applications, collecting a dataset of face videos is necessary for evaluating the performance of a tracker and for comparing different approaches. Unfortunately, the well-known benchmark datasets of face videos are not sufficiently diverse. As a result, it is difficult to compare the accuracy between different tracking algorithms in various conditions, namely illumination, background complexity, and subject movement. In this paper, we propose a new dataset that includes 91 face video clips that were recorded in different conditions. We also provide a semi-automatic ground-truth generation tool that can easily be used to evaluate the performance of face tracking systems. This tool helps to maintain the consistency of the definitions for the ground-truth in each frame. The resulting video data set is used to evaluate well-known approaches and test their efficiency.
International journal of advanced smart convergence
/
제4권2호
/
pp.20-28
/
2015
In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.
We propose a novel multiple-object tracking algorithm for real-time intelligent video surveillance. We adopt particle filtering as our tracking framework. Background modeling and subtraction are used to generate a region of interest. A two-step pedestrian detection is employed to reduce the computation time of the algorithm, and an iterative particle repropagation method is proposed to enhance its tracking accuracy. A matching score for greedy data association is proposed to assign the detection results of the two-step pedestrian detector to trackers. Various experimental results demonstrate that the proposed algorithm tracks multiple objects accurately and precisely in real time.
영상검지기(Video Image Detection System)는 교통운영 및 안전 등 교통류 관리를 위한 다양한 측면에서 이용될 수 있다. 영상검지기법은 크게 Tripwire System과 Tracking System으로 구분할 수 있으며, 가장 대표적으로 이용되는 Autoscope는 Tripwire System에 해당한다. 본 연구에서는 Autoscope의 성능을 구현할 수 있는 Tripwire 기반의 영상검지 기술을 자체적으로 개발함과 동시에, 미시적 교통정보를 취득할 수 있는 개별차량 추적기술을 이용한 Tracking 기반의 영상검지시스템을 개발하였다. 개발된 두 시스템의 통합에 앞서서, 동일한 영상과 분석시간을 가지고 기초적인 교통정보수집 능력에 대한 성능비교 및 분석을 수행하고자 하였으며, 우수성 및 정확성을 판단하기 위한 지표로는 가장 보편적이고 일반적으로 사용되고 있는 Autoscope를 이용하였다. 개발된 두 시스템과 Autoscope를 이용하여 성능비교를 수행한 결과, 교통량의 경우, 실제 교통량 대비 0.35%의 오차를 보였으며 Autoscope와 비교하여 1.78%의 오차를 보였다. 속도에 대한 성능비교는 Autoscope와 비교하여 최대 1.77%의 오차를 보여 개발된 두 시스템의 성능이 우수한 것으로 확인되었다.
본 논문에서는 영상 보안 감시를 위한 심층학습 객체 검출과 다중 객체 추적을 위한 확률적 데이터연관 필터를 연계한 영상분석 기법을 제안하고, GPU를 이용하여 구현하는 방안을 제시한다. 제안하는 영상분석 기법은 객체 검출과 추적으로 순차적으로 수행한다. 객체 검출을 위한 심층학습은 ResNet을 이용하고, 다중 객체 추적을 위하여 확률적 데이터 연관 필터를 적용한다. 제안하는 영상분석 기법은 임의의 영역으로 불법으로 침입하는 사람을 검출하거나 특정 공간에 출입하는 사람을 계수하는데 응용할 수 있다. 시뮬레이션을 통하여 약 25fps의 속도로 48채널의 영상을 분석할 수 있음을 보이고, RTSP 프로토콜을 통하여 실시간 영상분석이 가능함을 보인다.
본 연구는 시선 및 뇌파 정보를 이용하여 오디오-비주얼(audio-visual, AV) 시맨틱스 기반의 동영상 요약 방법들을 개발하고 평가해 보았다. 이를 위해서 27명의 대학생들을 대상으로 시선추적과 뇌파 실험을 수행하였다. 평가 결과, 뇌파와 동공크기 데이터를 함께 사용한 방법의 평균 재현율(0.73)이 뇌파 또는 동공크기 데이터만을 사용한 방법의 평균 재현율(뇌파: 0.50, 동공크기: 0.68)보다 높게 나타났다. 또한 AV 시맨틱스 기반의 개인화된 동영상 요약의 평균 재현율(0.57)이 AV 시맨틱스 기반의 일반적인 동영상 요약의 평균 재현율(0.69)보다 낮게 나타난 원인들을 분석하였다. 끝으로, AV 시맨틱스 기반 동영상 요약 방법과 텍스트 시맨틱스 기반 동영상 요약 방법 간의 차이 및 특성도 비교분석해 보았다.
In this letter, we propose a novel approach to detecting and tracking apartment buildings for the development of a video-based navigation system that provides augmented reality representation of guidance information on live video sequences. For this, we propose a building detector and tracker. The detector is based on the AdaBoost classifier followed by hierarchical clustering. The classifier uses modified Haar-like features as the primitives. The tracker is a motion-adjusted tracker based on pyramid implementation of the Lukas-Kanade tracker, which periodically confirms and consistently adjusts the tracking region. Experiments show that the proposed approach yields robust and reliable results and is far superior to conventional approaches.
An embedded system has been applied to many fields including households and industrial sites. The embedded system is implemented fur image tracking in security area. This system supports a fixed IP far the reliable server operation on TCP/IP networks. A real time video image on the is analyzed to detect a certain invader who jumped into the observed area. The digital camera is connected at the USB host port of the target board. The video images from the video camera is continuously analyzed and displayed at the Linux web-server. The moving vector of the invaders on the continuous image frames is calculated and then it sends the calculated pan/tilt movement. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The experiment result showed tracking performance by the moving part speed of 10 to 150 pixels/sec.
We propose a face tracking algorithm using skin-color based segmentation and a robust Hausdorff distance. First, we present L*a*b* color model and face segmentation algorithm. A face is segmented from the first frame of input video sequences using skin-color map. Then, we obtain an initial face model with Laplacian operator. For tracking, a robust Hausdorff distance is computed and the best possible displacement t. is selected. Finally, the previous face model is updated using the displacement t. It is robust to some noises and outliers. We provide an example to illustrate the proposed tracking algorithm in video sequences obtained from CCD camera.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.