스피치 요약을 생성하는데 있어서 두 가지 중요한 측면은 스피치에서 핵심 내용을 추출하는 것과 추출한 내용을 효과적으로 표현하는 것이다. 본 연구는 강의 자료의 스피치 요약의 자동 생성을 위해서 스피치 자막이 없는 경우에도 적용할 수 있는 스피치의 음향학적 자질 즉, 스피치의 속도, 피치(소리의 높낮이) 및 강도(소리의 세기)의 세 가지 요인을 이용하여 스피치 요약을 생성할 수 있는지 분석하고, 이 중 가장 효율적으로 이용할 수 있는 요인이 무엇인지 조사하였다. 조사 결과, 강도(최대값 dB과 최소값 dB간의 차이)가 가장 효율적인 요인으로 확인되었다. 이러한 강도를 이용한 방식의 효율성과 특성을 조사하기 위해서 이 방식과 본문 키워드 방식간의 차이를 요약문의 품질 측면에서 분석하고, 이 두 방식에 의해서 각 세그먼트(문장)에 할당된 가중치간의 관계를 분석해 보았다. 그런 다음 추출된 스피치의 핵심 세그먼트를 오디오 또는 텍스트 형태로 표현했을 때 어떤 특성이 있는지 이용자 관점에서 분석해 봄으로써 음향학적 특성을 이용한 스피치 요약을 효율적으로 추출하여 표현하는 방안을 제안하였다.
To obtain good summarization algorithms, we need first understand how people summarize videos. 'Semantic gap' refers to the gap between semantics implied in video summarization algorithms and what people actually infer from watching videos. We hypothesized that ERP responses to real time videos will show either N400 effects to topic-irrelevant shots in the 300∼500ms time-range after stimulus on-set or P600 effects to topic-relevant shots in the 500∼700ms time range. We recruited 32 participants in the EEG experiment, asking them to focus on the topic of short videos and to memorize relevant shots to the topic of the video. After analysing real time videos based on the participants' rating information, we obtained the following t-test result, showing N400 effects on PF1, F7, F3, C3, Cz, T7, and FT7 positions on the left and central hemisphere, and P600 effects on PF1, C3, Cz, and FCz on the left and central hemisphere and C4, FC4, P8, and TP8 on the right. A further 3-way MANOVA test with repeated measures of topic-relevance, hemisphere, and electrode positions showed significant interaction effects, implying that the left hemisphere at central, frontal, and pre-frontal positions were sensitive in detecting topic-relevant shots while watching real time videos.
본 논문에서는 효율적인 얼굴 영역 검출 기법을 제안하고 얼굴 객체 검출을 통해 인물 기반의 비디오 시스템을 제공한다. 비디오 분할을 위해 비디오 시퀀스로부터 장면 전환점을 검출하고 분할된 장면들로부터 대표 프레임을 선정한다. 대표 프레임은 인접 프레임 간 변화량이 가장 적은 프레임으로 선정하였으며 추출된 대표 프레임에 대해서 얼굴 영역 검출 알고리즘을 적용하여 등장인물을 포함하는 프레임들을 정보로 제공한다. 얼굴영역 검출을 위해 피부색의 통계적 특성을 이용한 Bayes 분류기를 이용한다. 피부색 검출 결과 영상으로부터 수직 및 수평 투영 기법을 이용하여 영상 분할을 수행하고 후보군들을 생성한다. 생성된 후보군 중 오검출 영역을 최소화하기 위해서 이진 분류 나무(CART)를 이용하여 분류기를 생성한다. 특징 값으로는 SGLD(spatial gray level dependence) 매트릭스로부터 Inertial, Inverse Difference, Correlation 등의 질감 정보를 이용하여 최적의 이진 분류 나무를 생성한다. 실험 결과 제안된 얼굴 영역 검출 알고리즘은 복잡하고 다양한 배경에서도 우수한 성능을 보였으며, 얼굴 객체를 포함하는 프레임들을 비디오 정보로 제공한다. 제안하는 시스템은 향후 화자 인식 기법을 이용하여 등장인물 기반의 비디오 분석 및 에 활용될 수 있을 것이다.
본 논문에서는 비디오 검색을 위한 비디오 사진 분류 시스템을 제안하였다. 제안된 시스템은 3개의 모듈인 특징 추출, 은닉 마르코브 모델 생성, 그리고 비디오 사진 분류로 구성되어 있다. 같은 등급에 속한 비디오 화면들이 반드시 유사하지 않으므로 견실한 Hidden Markov Model을 구성하기 위해서 는 충분한 학습이 필요하였다. 제안된 시스템은 텔레비전 야구 중계 방송의 비디오 화면을 15가지 등급으로 분류하여 분석 및 하는 실험을 한 결과 평균 84.72%의 인식률을 얻을 수 있었다.
MPEG-21 환경에서의 DI(Digital Item)은 MPEG-21 프레임워크 내에서 표준화된 표현 형식, 식별 체계, 서술 형식을 따르는 구조화된 디지털 객체이며, 유통, 처리의 최소 단위이다 따라서. 이러한 DI가 MPEG-21 멀티미디어 프레임워크 환경에서 사용자 터미널에 전달되었을 때 어떻게 처리되어야 될 것인지를 규정하는 것은 매우 중요한 과제이며. 이와 관련한 기술이 DIP(Digital Item Processing)이다. 본 논문에서는 DIP의 한 응용 예로서 멀티미디어 콘텐츠를 계층적으로 기술하는 Video Summary의 응용 방안에 대한 연구 결과를 제시하고자 한다.
본 연구는 스피치 요약의 알고리즘을 구성하기 위해서 방대한 스피치 본문의 복잡한 분석 없이 적용될 수 있는 이용자 태그 기법, 문장 위치 및 문장 중복도 제거 기법의 효율성을 분석해 보았다. 그런 다음, 이러한 분석 결과를 기초로 하여 스피치 요약 방법을 구성, 평가하여 효율적인 스피치 요약 방안을 제안하는 것을 연구 목적으로 하고 있다. 제안된 스피치 요약 방법은 태그 및 표제 키워드 정보를 활용하고 중복도를 최소화하면서 문장 위치에 대한 가중치를 적용할 수 있는 수정된 Maximum Marginal Relevance 모형을 사용하여 구성하였다. 제안된 요약 방법의 성능은 스피치 본문의 단어 빈도 및 단어 위치 정보를 적용하여 상대적으로 복잡한 어휘 처리를 한 Extractor 시스템의 성능과 비교되었다. 비교 결과, 제안된 요약 방법을 사용한 경우가 Extractor 시스템의 경우 보다 평균 정확률은 통계적으로 유의미한 차이를 보이며 더 높았고, 평균 재현율은 더 높았지만 통계적으로 유의미한 차이를 보이지는 못했다.
본 연구는 비디오 스킴의 자동 생성을 위한 비디오 요약 알고리즘을 제안하고 이를 평가하였다. 제안된 알고리즘은 ERP(Event Related Potentials) 기반의 주제 적합성 모형, MMR(Maximal Marginal Relevance) 기법 및 판별분석기법을 사용하여 구현하였다. 제안한 ERP/MMR 기반 알고리즘을 이용하여 구성한 비디오 스킴의 품질과 유용성을 내재적 및 외재적 평가를 통해서 검증하였다. 내재적 및 외재적 평가에서 ERP/MMR 방법들의 평가 점수들은 각각 경쟁 기준으로 사용한 SBD(Shot Boundary Detection) 방법의 평가 점수 보다 유의미한 차이를 보이며 높게 나왔다. 그러나 이 두 평가에서 ERP/MMR(${\lambda}=0.6$) 방법의 평가 점수와 ERP/MMR(${\lambda}=1.0$) 방법의 평가 점수 간에 통계적으로 유의미한 차이는 없는 것으로 나타났다.
본 논문에서는 교양 비디오 데이터베이스 시스템을 구축하기 위한 비디오 모델을 제안한다. 먼저, 교양 비디오의 효율적인 색인화와 검색을 위하여 교양 비디오를 의미 있는 단위로 분할하는 효율적인 장면 전환 검출 기법을 사용하였다 비디오가 대용량이며 장시간의 재생이 필요하다는 특징 때문에 전체 비디오를 시청해야하는 문제점이 있다. 이 문제점을 해결하기 위해 교양 비디오의 개요를 추출하여 시청자들에게 시간을 절약할 수 있고, 비디오 선택의 폭을 넓히도록 하였다. 비디오 개요는 개요 생성 규칙을 설정하여 중요 이벤트가 발생한 장면들을 요약한 형태이다.
Journal of information and communication convergence engineering
/
제21권4호
/
pp.287-293
/
2023
With the rapid development of domestic and international over-the-top markets, a large amount of video content is being created. As the volume of video content increases, consumers tend to increasingly check data concerning the videos before watching them. To address this demand, video summaries in the form of plot descriptions, thumbnails, posters, and other formats are provided to consumers. This study proposes an approach that automatically generates posters to effectively convey video content while reducing the cost of video summarization. In the automatic generation of posters, face recognition and clustering are used to gather and classify character data, and keyframes from the video are extracted to learn the overall atmosphere of the video. This study used the facial data of the characters and keyframes as training data and employed technologies such as DreamBooth, a text-to-image generation model, to automatically generate video posters. This process significantly reduces the time and cost of video-poster production.
본 논문에서는 광범위한 지역을 감시하기 위해 설치된 여러 대의 카메라로부터 획득된 비디오에 대해 행동을 기반으로 한 비디오 요약 시스템을 제안한다. 제안된 시스템은 시야가 겹쳐지지 않은 다수의 CCTV 카메라를 통해서 촬영한 비디오들을 30분 단위로 나누어 비디오 데이터베이스를 구축하여 시간별, 카메라별 비디오 검색이 가능하다. 또한 비디오에서 키프레임을 추출하여 카메라별, 사람별, 행동별로 비디오를 요약할 수 있도록 하였다. 또한 임계치에 따라 키프레임 검색정도를 조절함으로써 비디오 요약정도를 조절할 수 있다. in. out, stay, left, right, forward, backward와 관련된 11가지 행동을 추출하여 요약된 정보를 가지고 현재 사람의 행동이 어떤 영역에서 어떤 방향으로 움직이고 있는 지에 대한 정보를 보여줌으로써 더 자세히 행동추적을 할 수 있다. 또한 카메라 3대에 대한 전체적인 키프레임에 대한 행동별 통계를 통해서 감시지역의 행동기반 이벤트를 간단히 확인해 볼 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.