• Title/Summary/Keyword: Video representation

Search Result 195, Processing Time 0.032 seconds

A Signature-based Video Indexing Scheme using Spatio-Temporal Modeling for Content-based and Concept-based Retrieval on Moving Objects (이동 객체의 내용 및 개념 기반 검색을 위한 시공간 모델링에 근거한 시그니쳐 기반 비디오 색인 기법)

  • Sim, Chun-Bo;Jang, Jae-U
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.31-42
    • /
    • 2002
  • In this paper, we propose a new spatio-temporal representation scheme which can model moving objets trajectories effectively in video data and a new signature-based access method for moving objects trajectories which can support efficient retrieval on user query based on moving objects trajectories. The proposed spatio-temporal representation scheme supports content-based retrieval based on moving objects trajectories and concept-based retrieval based on concepts(semantics) which are acquired through the location information of moving objects trajectories. Also, compared with the sequential search, our signature-based access method can improve retrieval performance by reducing a large number of disk accesses because it access disk using only retrieved candidate signatures after it first scans all signatures and performs filtering before accessing the data file. Finally, we show the experimental results that proposed scheme is superior to the Li and Shan's scheme in terns of both retrieval effectiveness and efficiency.

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.

Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity

  • Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2851-2865
    • /
    • 2014
  • To improve the rate-distortion performance of distributed video compressive sensing (DVCS), the adaptive sparse basis and nonlocal similarity of video are proposed to jointly reconstruct the video signal in this paper. Due to the lack of motion information between frames and the appearance of some noises in the reference frames, the sparse dictionary, which is constructed using the examples directly extracted from the reference frames, has already not better obtained the sparse representation of the interpolated block. This paper proposes a method to construct the sparse dictionary. Firstly, the example-based data matrix is constructed by using the motion information between frames, and then the principle components analysis (PCA) is used to compute some significant principle components of data matrix. Finally, the sparse dictionary is constructed by these significant principle components. The merit of the proposed sparse dictionary is that it can not only adaptively change in terms of the spatial-temporal characteristics, but also has ability to suppress noises. Besides, considering that the sparse priors cannot preserve the edges and textures of video frames well, the nonlocal similarity regularization term has also been introduced into reconstruction model. Experimental results show that the proposed algorithm can improve the objective and subjective quality of video frame, and achieve the better rate-distortion performance of DVCS system at the cost of a certain computational complexity.

VDCluster : A Video Segmentation and Clustering Algorithm for Large Video Sequences (VDCluster : 대용량 비디오 시퀀스를 위한 비디오 세그멘테이션 및 클러스터링 알고리즘)

  • Lee, Seok-Ryong;Lee, Ju-Hong;Kim, Deok-Hwan;Jeong, Jin-Wan
    • Journal of KIISE:Databases
    • /
    • v.29 no.3
    • /
    • pp.168-179
    • /
    • 2002
  • In this paper, we investigate video representation techniques that are the foundational work for the subsequent video processing such as video storage and retrieval. A video data set if a collection of video clips, each of which is a sequence of video frames and is represented by a multidimensional data sequence (MDS). An MDS is partitioned into video segments considering temporal relationship among frames, and then similar segments of the clip are grouped into video clusters. Thus, the video clip is represented by a small number of video clusters. The video segmentation and clustering algorithm, VDCluster, proposed in this paper guarantee clustering quality to south an extent that satisfies predefined conditions. The experiments show that our algorithm performs very effectively with respect to various video data sets.

Affective Representation and Consistency Across Individuals Responses to Affective Videos (정서 영상에 대한 정서표상 및 개인 간 반응 일관성)

  • Ahran Jo;Hyeonjung Kim;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.15-28
    • /
    • 2023
  • This study examined the affective representation and response consistency among individuals using affective videos, a naturalistic stimulus inducing emotional experiences most similar to those in daily life. In this study, multidimensional scaling was conducted to investigate whether the various affective representations induced through video stimuli are located in the core affect dimensions. A cross-participant classification analysis was also performed to verify whether the video stimuli are well classified. Additionally, the newly developed intersubject correlation analysis was conducted to assess the consistency of affective representations across participant responses. Multidimensional scaling revealed that the video stimuli are represented well in the valence dimension, partially supporting Russell (1980)'s core affect theory. The classification results showed that affective conditions were successfully classified across participant responses. Moreover, the intersubject correlation analysis showed that the consistency of affective representations to video stimuli differed with respect to the condition. This study suggests that the affective representations and consistency of individual responses to affective videos varied across different affective conditions.

A novel hybrid method for robust infrared target detection

  • Wang, Xin;Xu, Lingling;Zhang, Yuzhen;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5006-5022
    • /
    • 2017
  • Effect and robust detection of targets in infrared images has crucial meaning for many applications, such as infrared guidance, early warning, and video surveillance. However, it is not an easy task due to the special characteristics of the infrared images, in which the background clutters are severe and the targets are weak. The recent literature demonstrates that sparse representation can help handle the detection problem, however, the detection performance should be improved. To this end, in this text, a hybrid method based on local sparse representation and contrast is proposed, which can effectively and robustly detect the infrared targets. First, a residual image is calculated based on local sparse representation for the original image, in which the target can be effectively highlighted. Then, a local contrast based method is adopted to compute the target prediction image, in which the background clutters can be highly suppressed. Subsequently, the residual image and the target prediction image are combined together adaptively so as to accurately and robustly locate the targets. Based on a set of comprehensive experiments, our algorithm has demonstrated better performance than other existing alternatives.

A Study of the Mimesis in Media Costume Design (미디어의상 디자인에 표현된 미메시스 연구)

  • Yang, Su-Mi;Kwon, Mi-Jeong
    • Fashion & Textile Research Journal
    • /
    • v.13 no.3
    • /
    • pp.309-320
    • /
    • 2011
  • Since Homeros in Greece, Mimesis was thought to be an art to imitate the nature, and it means an imitation of the nature classically. Mimetic theories were set to be a kind of art work in the era of Renaissance, and the terminology of mimesis was widely used to replace it with an originality in the 15th century. The purpose of this study is to understand the aesthetics of mimesis expressed in media costume design. For this purpose, I investigated the theories of the mimesis, categorized the definition, then applied those categories for media costume design. Documentary studies were conducted through aesthetics, fashion books and demonstrative studies were processed by analyzing photos from collection fashion magazines and media DVD, video, fashion site of internet. In the history of aesthetics, the mimesis could be defined into three categories; the external representation mimesis, the internal symbol mimesis and the multiful meta mimesis. In media costume, the representation mimesis included design historical point of view, a period that of 1900s and ancient representation mimesis. The internal mimesis included symbol of religion, character, riches, psychology and fear mimesis. The multiful meta mimesis included hybrid and distortion mimesis. Analysis on the mimesis expressed in media costume design fashion may provide an excellent method for understanding human aesthetic in costume.

AMR-CNN: Abstract Meaning Representation with Convolution Neural Network for Toxic Content Detection

  • Ermal Elbasani;Jeong-Dong Kim
    • Journal of Web Engineering
    • /
    • v.21 no.3
    • /
    • pp.677-692
    • /
    • 2022
  • Recognizing the offensive, abusive, and profanity of multimedia content on the web has been a challenge to keep the web environment for user's freedom of speech. As profanity filtering function has been developed and applied in text, audio, and video context in platforms such as social media, entertainment, and education, the number of methods to trick the web-based application also has been increased and became a new issue to be solved. Compared to commonly developed toxic content detection systems that use lexicon and keyword-based detection, this work tries to embrace a different approach by the meaning of the sentence. Meaning representation is a way to grasp the meaning of linguistic input. This work proposed a data-driven approach utilizing Abstract meaning Representation to extract the meaning of the online text content into a convolutional neural network to detect level profanity. This work implements the proposed model in two kinds of datasets from the Offensive Language Identification Dataset and other datasets from the Offensive Hate dataset merged with the Twitter Sentiment Analysis dataset. The results indicate that the proposed model performs effectively, and can achieve a satisfactory accuracy in recognizing the level of online text content toxicity.

Video Browsing Using An Efficient Scene Change Detection in Telematics (텔레매틱스에서 효율적인 장면전환 검출기법을 이용한 비디오 브라우징)

  • Shin Seong-Yoon;Pyo Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.147-154
    • /
    • 2006
  • Effective and efficient representation of color features of multiple video frames is an important vet challenging task for visual information management systems. This paper Proposes a Video Browsing Service(VBS) that provides both the video content retrieval and the video browsing by the real-time user interface on Web. For the scene segmentation and key frame extraction of video sequence, we proposes an efficient scene change detection method that combine the RGB color histogram with the X2 (Chi Square) histogram. Resulting key frames are linked by both physical and logical indexing. This system involves the video editing and retrieval function of a VCR's. Three elements that are the date, the need and the subject are used for video browsing. A Video Browsing Service is implemented with MySQL, PHP and JMF under Apache Web Server.

  • PDF

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.