KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.8
/
pp.3804-3819
/
2018
The increasing popularity of HTTP adaptive video streaming services has dramatically increased bandwidth requirements on operator networks, which attempt to shape their traffic through Deep Packet inspection (DPI). However, Google and certain content providers have started to encrypt their video services. As a result, operators often encounter difficulties in shaping their encrypted video traffic via DPI. This highlights the need for new traffic classification methods for encrypted HTTP adaptive video streaming to enable smart traffic shaping. These new methods will have to effectively estimate the quality representation layer and playout buffer. We present a new machine learning method and show for the first time that video quality representation classification for (YouTube) encrypted HTTP adaptive streaming is possible. The crawler codes and the datasets are provided in [43,44,51]. An extensive empirical evaluation shows that our method is able to independently classify every video segment into one of the quality representation layers with 97% accuracy if the browser is Safari with a Flash Player and 77% accuracy if the browser is Chrome, Explorer, Firefox or Safari with an HTML5 player.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1996.06b
/
pp.29-34
/
1996
This paper proposes a new concept in video called Graphical Video. Graphical Video is a content-based and scalable video representation. A video consists of several elements such as moving images, still images, graphics, characters and charts. All of these elements can be represented graphically except moving images. It is desirable to transform these moving images graphical elements so that they can be treated in the same way as other graphical elements. To achieve this, we propose a new graphical representation of moving images using spatio-temporal clusters, which consist of texture and contours. The texture is described by three-dimensional fractal coefficients, while the contours are described by polygons. We propose a method that gives domain pool location and size as a means to describe cluster texture within or near a region of clusters. Results of an experiment on texture quality confirm that the method provides sufficiently high SNR as compared to that in the original three-dimensional fractal approximation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.133-134
/
2018
MPEG-NNR (Compressed Representation of Neural Networks) aims to define a compressed and interoperable representation of trained neural networks. In this paper, a compressed representation of NN and its evaluation performance along with use cases of image/video compression in MPEG-NNR are presented. In the compression of NN, a CNN to replace the in-loop filter in VVC (Versatile Video Coding) intra coding is compressed by applying uniform quantization to reduce the trained weights, and the compressed CNN is evaluated in terms of compression ratio and coding efficiency compared to the original CNN. Evaluation results show that CNN could be compressed to about quarter with negligible coding loss by applying simple quantization to the trained weights.
Journal of the Korea Society of Computer and Information
/
v.5
no.3
/
pp.99-105
/
2000
Video has become an important element of multimedia computing and communication environments, with applications as varied as broadcasting, education, publishing, and military intelligence. The necessity of the efficient methods for multimedia data retrieval is increasing more and more on account of various large scale multimedia applications. According1y, the retrieval and representation of video data becomes one of the main research issues in video database. As for the representation of the video data there have been mainly two approaches: (1) content-based video retrieval, and (2) annotation-based video retrieval This paper designs and implements a video retrieval system for using semantic-based annotation.
As most of metadata have been handled on restricted applications, we need a same metadata in order to represent a same video data. However, these metadata make problems that the same video data should be supported by the same metadata. Therefore, in this paper, we extend the Dublin core elements to support the metadata which can solve the problems. The proposed video data representation is managed by the extended metadata of Doblin core model, by using the information of structure, content and manipulation of video data. The thirteen temporal relationship operators are reduced to the six temporal relationship operators by using a dummy shot temporal transformation relationship. The reduced six temporal relationship operators through excluding reverse temporal relationship not only maintain a consistency of representation between a metadata and a video data, but also transform n-ary temporal relationship to binary relationship on shots. We show that the proposed metadata model can be applied to representing and retrieving on various applications as equivalent as the same structure.
Car navigation system is a key application in geographic information system and telematics. A recent trend of car navigation system is using real video captured by camera equipped on the vehicle, because video has more representation power about real world than conventional map. In this paper, we suggest a visual car navigation system that visually represents route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid directly on the video. The system integrates real-time data acquisition, conventional route finding and guidance, computer vision, and augmented reality display. We also designed visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to current location and driving circumstances. We briefly show implementation of the system.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.2
/
pp.43-51
/
2014
Multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission, because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This efficient method to compress new contents is suggested to use layered depth image representation and to apply for video compression encoding by using 3D warping. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, we confirmed high compression performance and good quality of reconstructed image.
Journal of Korea Society of Digital Industry and Information Management
/
v.7
no.2
/
pp.91-100
/
2011
Free viewpoint TV can provide multi-angle view point images for viewer needs. In the real world, But all angle view point images can not be captured by camera. Only a few any angle view point images are captured by each camera. Group of the captured images is called multi-view image. Therefore free viewpoint TV wants to production of virtual sub angle view point images form captured any angle view point images. Interpolation methods are known of this problem general solution. To product interpolated view point image of correct angle need to depth image of multi-view image. Unfortunately, multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, confirmed high compression performance and good quality reconstructed image.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.5
/
pp.2346-2362
/
2016
As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.
Car navigation system is one of the most important applications in telematics. A newest trend of car navigation system is using real video captured by camera equipped on the vehicle, because video can overcome the semantic gap between map and real world. In this paper, we suggest a visual car navigation system that visually represents navigation information or route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid on it. Main services of the visual car navigation system are graphical turn guidance and lane change guidance. We suggest the system architecture that implements the services by integrating conventional route finding and guidance, computer vision functions, and augmented reality display functions. What we designed as a core part of the system is visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to a determination rule based on current location and driving circumstances. We briefly show the implementation of system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.