• 제목/요약/키워드: Video recognition

검색결과 683건 처리시간 0.022초

시공간 2D 특징 설명자를 사용한 BOF 방식의 동작인식 (BoF based Action Recognition using Spatio-Temporal 2D Descriptor)

  • 김진옥
    • 인터넷정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.21-32
    • /
    • 2015
  • 동작인식 연구에서 비디오를 표현하는 시공간 부분 특징이 모델 없는 상향식 방식의 주요 주제가 되면서 동작 특징을 검출하고 표현하는 방법이 여러 연구를 통해 다양하게 제안되고 있다. 그 중에서 BoF(bag of features)방식은 가장 일관성 있는 인식 결과를 보여주고 있다. 비디오의 동작을 BoF로 나타내기 위해서는 어떻게 동작의 역동적 정보를 표현할 것인가가 가장 중요한 부분이다. 그래서 기존 연구에서는 비디오를 시공간 볼륨으로 간주하고 3D 동작 특징점 주변의 볼륨 패치를 복잡하게 설명하는 것이 가장 일반적인 방법이다. 본 연구에서는 기존 3D 기반 방식을 간략화하여 비디오의 동작을 BoF로 표현할 때 비디오에서 2D 특징점을 직접 수집하는 방식을 제안한다. 제안 방식의 기본 아이디어는 일반적 공간프레임의 2D xy 평면뿐만 아니라 시공간 프레임으로 불리는 시간축 평면에서 동작 특징점을 추출하여 표현하는 것으로 특징점이 비디오에서 역동적 동작 정보를 포착하기 때문에 동작 표현 특징 설명자를 3D로 확장할 필요 없이 2D 설명자만으로 간단하게 동작인식이 가능하다. SIFT, SURF 특징 표현 설명자로 표현하는 시공간 BoF 방식을 주요 동작인식 데이터에 적용하여 우수한 동작 인식율을 보였다. 3D기반의 HoG/HoF 설명자와 비교한 경우에도 제안 방식이 더 계산하기 쉽고 단순하게 이해할 수 있다.

ART2 알고리즘을 이용한 수화 인식 (Sign Language Recognition Using ART2 Algorithm)

  • 김광백;우영운
    • 한국정보통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.937-941
    • /
    • 2008
  • 수화는 청각 장애인에게 있어 중요한 의사소통 수단이며, 청각 장애인들은 수화를 통해 대인관계를 넓히며 또한 불편함 없는 일상생활이 가능하다. 그러나 최근 인터넷 통신의 발전으로 증가하고 있는 많은 화상 채팅 및 화상 통화서비스에서는 건청인과 청각 장애인 사이에 통역을 하는 시스템이 없어 청각 장애인들이 불편을 겪고 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 수화 인식기법을 제안하였다. 제안된 기법에서는 화상 카메라를 통해 얻어진 영상에서 각각 RGB, YUV, HSI 색상 정보를 이용하여 두 손의 위치를 추적하여 잡음을 제거 한 후, 두 손의 영역을 추출한다. 추출된 손의 영역은 잡음과 훼손에 강한 ART2 알고리즘을 이용하여 학습한 후 인식한다. 본 논문에서 제안된 수화 인식 방법을 실험한 결과, 수화에 사용된 지 숫자 1부터 10을 효율적으로 인식하는 것을 확인하였다.

TSSN: 감시 영상의 강우량 인식을 위한 심층 신경망 구조 (TSSN: A Deep Learning Architecture for Rainfall Depth Recognition from Surveillance Videos)

  • 리준;현종환;최호진
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.87-97
    • /
    • 2018
  • 강우량은 매우 중요한 기상 정보이다. 일반적으로, 도로 수준과 같은 높은 공간 해상도의 강우량이 더 높은 가치를 가진다. 하지만, 도로 수준의 강우량을 측정하기 위해 충분한 수의 기상 관측 장비를 설치하는 것은 비용 관점에서 비효율적이다. 본 논문에서는 도로의 감시 카메라 영상으로부터 강우량을 인식하기 위해 심층 신경망을 활용하는 방법에 대해 제시한다. 해당 목표를 달성하기 위해, 본 논문에서는 교내 두 지역의 감시 카메라 영상과 강우량 데이터를 수집했으며, 새로운 심층 신경망 구조인 Temporal and Spatial Segment Networks(TSSN)를 제안한다. 본 논문에서 제시한 심층 신경망으로 강우량 인식을 수행한 결과, 프레임 RGB와 두 연속 프레임 RGB 차이를 입력으로 사용했을 때, 높은 성능으로 강우량 인식을 수행할 수 있었다. 또한, 기존의 심층 신경망 모델과 비교했을 때, 본 논문에서 제안하는 TSSN이 가장 높은 성능을 기록함을 확인할 수 있었다.

Vanishing point-based 3D object detection method for improving traffic object recognition accuracy

  • Jeong-In, Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.93-101
    • /
    • 2023
  • 이 논문은 영상 카메라를 이용하여 교통 객체를 인식하고자 하는 경우, 영상 내 객체 인식 정확도를 높이기 위해 소실점을 이용하여 객체에 대한 3D 바운딩 박스를 생성하는 방법이다. 최근 인공지능을 이용하여 교통 영상 카메라로 촬영된 차량을 검출하고자 하는 경우 이 3D 바운딩 박스 생성 알고리즘을 적용하고자 한다. 카메라 설치 각도와 카메라가 촬영한 영상의 방향성을 분석하여 종 방향 소실점(VP1)과 횡 방향 소실점(VP2)을 도출하고 이를 기반으로 분석 대상 동영상에서 이동하는 객체를 특정하게 된다. 이 알고리즘을 적용하면 감지된 객체의 위치, 종류, 크기 등 객체 정보 검출이 용이하고, 이를 자동차와 같은 이동류에 적용하는 경우 이를 트래킹하여 각 객체가 이동한 위치와 좌표, 이동속도 및 방향 등을 알 수 있다. 실제 도로에 적용한 결과 트래킹이 10% 향상되었으며 특히 음영지역(큰 차에 가려진 극히 적은 차량 부위)의 인식율과 트래킹이 100% 개선되는 등 교통 데이터 분석 정확성을 향상시킬 수 있었다.

Efficient Mobile Writing System with Korean Input Interface Based on Face Recognition

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.49-56
    • /
    • 2020
  • 가상 키보드방식의 문자 입력 시스템은 고정된 버튼 위치를 터치하여 입력하는 방식으로 손가락의 움직임이 불편한 사람들이나 노인들은 입력하기가 매우 불편하다. 이러한 문제를 완화시키고자, 본 논문에서는 모바일 디바이스의 RGB 카메라를 통해 얻은 영상과 사용자의 움직임을 통해 자판 입력과 필기 기능이 가능한 효율적인 프레임워크를 제안한다. 이 시스템을 개발하기 위해 얼굴인식을 활용하여 입력 영상으로부터 컨트롤 좌표를 계산하고, 이 좌표 값을 이용하여 한글을 입력하고 조합할 수 있는 인터페이스 개발한다. 얼굴인식을 기반으로 계산된 컨트롤 위치는 자판의 글자를 선택하고 전달하는 포인터 역할을 하며, 마지막으로 전달된 글자들을 조합하여 한글 자판 기능을 수행할 수 있도록 통합한다. 본 연구의 결과는 얼굴인식 기술을 활용한 효율적인 필기 시스템이며, 이 시스템을 사용하면 일반인 뿐 만 아니라 신체가 불편한 지체장애인의 의사소통 및 특수교육 환경도 개선시킬 수 있을 거라 기대한다.

자율주행을 위한 융복합 영상 식별 시스템 개발 (Development of a Multi-disciplinary Video Identification System for Autonomous Driving)

  • 조성윤;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.65-74
    • /
    • 2024
  • 최근 자율주행 분야에서는 영상 처리 기술이 중요한 역할을 하고 있다. 그 중에서도 영상 식별 기술은 자율주행 차량의 안전성과 성능에 매우 중요한 역할을 한다. 이에 따라 본 논문에서는 융복합 영상 식별 시스템을 개발하여 자율주행 차량의 안전성과 성능을 향상시키는 것을 목표로 한다. 본 연구에서는 다양한 영상 식별 기술을 활용하여 차량주변 환경의 객체를 인식하고 추적하는 시스템을 구축한다. 이를 위해 머신 러닝과 딥 러닝 알고리즘을 활용하며, 이미지처리 및 분석 기술을 통해 실시간으로 객체를 식별하고 분류한다. 또한, 본 연구에서는 영상 처리 기술과 차량 제어 시스템을 융합하여 자율주행 차량의 안전성과 성능을 높이는 것을 목표로 한다. 이를 위해, 식별된 객체의 정보를 차량 제어시스템에 전달하여 자율주행 차량이 적절하게 반응하도록 한다. 본 연구에서 개발된 융복합 영상 식별 시스템은 자율주행 차량의 안전성과 성능을 크게 향상시킬 것으로 기대된다. 이를 통해 자율주행 차량의 상용화가 더욱 가속화될 것으로 기대된다.

화재 상황 인식 모델을 적용한 종합 상황 판단 시스템 (Synthetic Circumstantial Judgement System Applied Recognition of Fire Levels Model)

  • 송재원;이세희;안태기;신정렬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1275-1281
    • /
    • 2011
  • This paper presents synthetic circumstantial judgement system that detects and predicts a fire in subway station. Unlike conventional fire surveillance systems that judge the fire or not through smoke, CO, temperature or variation of temperature, a proposed system discovers a fire more easily or gives the alarm high possibility of fire to operator through recognition of fire levels based on Fuzzy Inference System using by FCM and information of objects from video data.

  • PDF

지능형 객체 인식 기술을 이용한 실시간 동영상 검색시스템 (Development of Real-time Video Search System Using the Intelligent Object Recognition Technology)

  • 장재영;강찬혁;윤재민;조재원;정지성;전종훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.85-91
    • /
    • 2020
  • 최근 범죄예방과 안전문제 등으로 CCTV와 같은 영상장비가 다양하게 활용되고 있다. 영상기기들은 대부분 24시간 작동되기 때문에 경비 인력을 절감할 수 있지만, 녹화된 영상에서 특정 인물과 같은 객체를 검색하는 업무는 여전히 수동으로 이루어지고 있어, 실시간 검색이 요구되는 상황에서는 정확하고 빠른 대처가 미흡하다. 본 논문에서는 최신 딥러닝 기술과 OpenCV 라이브러리를 이용하여 사용자의 의해 입력된 의상정보를 바탕으로 특정인물을 영상에서 빠르게 검색하고, 그 결과를 실시간으로 전송하는 기술을 제안한다. 개발된 시스템은 YOLO 라이브러리를 이용하여 실시간으로 인물객체를 탐지한 후, 딥러닝 기술을 이용하여 인간의 의상을 상/하의로 구분하고 OpenCV 라이브러리를 통해 색을 검출하여 특정 인물 객체를 자동으로 인식하도록 구현하였다. 본 논문에서 개발한 시스템은 특정 의상을 갖춘 인물객체를 정확하고 빠르게 인식할 뿐만 아니라 기타 객체 인식에도 활용할 수 있는 확장성을 갖추고 있어 다양한 용도의 영상감시시스템에 활용될 수 있을 것으로 기대된다.

지능형 행동인식 기술을 이용한 실시간 동영상 감시 시스템 개발 (Development of Real-time Video Surveillance System Using the Intelligent Behavior Recognition Technique)

  • 장재영;홍성문;손다미;유호진;안형우
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.161-168
    • /
    • 2019
  • 최근에 빠르게 확산되고 있는 CCTV와 같은 영상기기들은 거의 모든 공공기관, 기업, 가정 등에서 비정상적인 상황을 감시하고 대처하기 위한 수단으로 활용되고 있다. 그러나 대부분의 경우 이상상황에 대한 인식은 모니터링하고 있는 사람에 의해 수동적으로 이루어지고 있어 즉각적인 대처가 미흡하며 사후 분석용으로만 활용되고 있다. 본 논문에서는 최신 딥러닝 기술과 실시간 전송기술을 활용하여 이벤트 발생시 스마트폰으로 이상 상황을 동영상과 함께 실시간으로 전송하는 동영상 감시 시스템의 개발 결과를 제시한다. 개발된 시스템은 오픈포즈 라이브러리를 이용하여 실시간으로 동영상으로 부터 인간 객체를 스켈레톤으로 모델링한 후, 딥러닝 기술을 이용하여 인간의 행동을 자동으로 인식하도록 구현하였다. 이를 위해 Caffe 프레임워크를 개발된 오픈포즈 라이브러리를 다크넷 기반으로 재구축하여 실시간 처리 능력을 대폭 향상 시켰으며, 실험을 통해 성능을 검증하였다. 본 논문에서 소개할 시스템은 정확하고 빠른 행동인식 성능과 확장성을 갖추고 있어 다양한 용도의 동영상 감시 시스템에 활용될 수 있을 것으로 기대된다.

깊이 터치를 통한 영상 이벤트 제어 시스템 (Video event control system by recognition of depth touch)

  • 이동석;권순각
    • 한국산업정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.35-42
    • /
    • 2016
  • 재생되는 동영상에서 정지, 재생, 캡쳐, 확대, 축소 등의 다양한 이벤트 제공은 스마트폰과 같은 작은 크기의 모니터에서 가능하다. 그러나, 모니터의 크기가 커지게 되면, 터치 인식에 대한 비용이 증가하게 되어, 터치를 통한 이벤트 제공은 사실상 불가능하다. 본 논문에서는 저렴하게 깊이 정보로 터치를 인식하고, 단일 및 다중 터치로 토글, 핀치-인/아웃 등의 다양한 이벤트를 부여하는 영상 이벤트 제어시스템을 제안한다. 깊이 카메라로부터 얻어진 깊이 정보로 터치된 위치와 터치 경로를 찾고, 터치 제스처 종류를 파악한다. 이러한 터치 인터페이스 알고리즘은 소형 싱글보드 시스템에서 구현하고, UART 통신을 통해 제스처 정보를 전송함으로써 영상 이벤트를 제어할 수 있다. 모의실험을 바탕으로 대형 스크린에서 제안한 깊이 터치 방법으로 다양한 영상 이벤트를 제어할 수 있음을 보인다.