• Title/Summary/Keyword: Video recognition

Search Result 683, Processing Time 0.023 seconds

Adaptive Keyframe and ROI selection for Real-time Video Stabilization (실시간 영상 안정화를 위한 키프레임과 관심영역 선정)

  • Bae, Ju-Han;Hwang, Young-Bae;Choi, Byung-Ho;Chon, Je-Youl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.288-291
    • /
    • 2011
  • Video stabilization is an important image enhancement widely used in surveillance system in order to improve recognition performance. Most previous methods calculate inter-frame homography to estimate global motion. These methods are relatively slow and suffer from significant depth variations or multiple moving object. In this paper, we propose a fast and practical approach for video stabilization that selects the most reliable key frame as a reference frame to a current frame. We use optical flow to estimate global motion within an adaptively selected region of interest in static camera environment. Optimal global motion is found by probabilistic voting in the space of optical flow. Experiments show that our method can perform real-time video stabilization validated by stabilized images and remarkable reduction of mean color difference between stabilized frames.

  • PDF

Facial Expression Recognition using 1D Transform Features and Hidden Markov Model

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Daijin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1657-1662
    • /
    • 2017
  • Facial expression recognition systems using video devices have emerged as an important component of natural human-machine interfaces which contribute to various practical applications such as security systems, behavioral science and clinical practices. In this work, we present a new method to analyze, represent and recognize human facial expressions using a sequence of facial images. Under our proposed facial expression recognition framework, the overall procedure includes: accurate face detection to remove background and noise effects from the raw image sequences and align each image using vertex mask generation. Furthermore, these features are reduced by principal component analysis. Finally, these augmented features are trained and tested using Hidden Markov Model (HMM). The experimental evaluation demonstrated the proposed approach over two public datasets such as Cohn-Kanade and AT&T datasets of facial expression videos that achieved expression recognition results as 96.75% and 96.92%. Besides, the recognition results show the superiority of the proposed approach over the state of the art methods.

Improved DT Algorithm Based Human Action Features Detection

  • Hu, Zeyuan;Lee, Suk-Hwan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.478-484
    • /
    • 2018
  • The choice of the motion features influences the result of the human action recognition method directly. Many factors often influence the single feature differently, such as appearance of the human body, environment and video camera. So the accuracy of action recognition is restricted. On the bases of studying the representation and recognition of human actions, and giving fully consideration to the advantages and disadvantages of different features, the Dense Trajectories(DT) algorithm is a very classic algorithm in the field of behavior recognition feature extraction, but there are some defects in the use of optical flow images. In this paper, we will use the improved Dense Trajectories(iDT) algorithm to optimize and extract the optical flow features in the movement of human action, then we will combined with Support Vector Machine methods to identify human behavior, and use the image in the KTH database for training and testing.

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.

Chaotic Features for Dynamic Textures Recognition with Group Sparsity Representation

  • Luo, Xinbin;Fu, Shan;Wang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4556-4572
    • /
    • 2015
  • Dynamic texture (DT) recognition is a challenging problem in numerous applications. In this study, we propose a new algorithm for DT recognition based on group sparsity structure in conjunction with chaotic feature vector. Bag-of-words model is used to represent each video as a histogram of the chaotic feature vector, which is proposed to capture self-similarity property of the pixel intensity series. The recognition problem is then cast to a group sparsity model, which can be efficiently optimized through alternating direction method of multiplier algorithm. Experimental results show that the proposed method exhibited the best performance among several well-known DT modeling techniques.

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

Traffic Light Recognition Using a Deep Convolutional Neural Network (심층 합성곱 신경망을 이용한 교통신호등 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1244-1253
    • /
    • 2018
  • The color of traffic light is sensitive to various illumination conditions. Especially it loses the hue information when oversaturation happens on the lighting area. This paper proposes a traffic light recognition method robust to these illumination variations. The method consists of two steps of traffic light detection and recognition. It just uses the intensity and saturation in the first step of traffic light detection. It delays the use of hue information until it reaches to the second step of recognizing the signal of traffic light. We utilized a deep learning technique in the second step. We designed a deep convolutional neural network(DCNN) which is composed of three convolutional networks and two fully connected networks. 12 video clips were used to evaluate the performance of the proposed method. Experimental results show the performance of traffic light detection reporting the precision of 93.9%, the recall of 91.6%, and the recognition accuracy of 89.4%. Considering that the maximum distance between the camera and traffic lights is 70m, the results shows that the proposed method is effective.

A Deep Learning Algorithm for Fusing Action Recognition and Psychological Characteristics of Wrestlers

  • Yuan Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.754-774
    • /
    • 2023
  • Wrestling is one of the popular events for modern sports. It is difficult to quantitatively describe a wrestling game between athletes. And deep learning can help wrestling training by human recognition techniques. Based on the characteristics of latest wrestling competition rules and human recognition technologies, a set of wrestling competition video analysis and retrieval system is proposed. This system uses a combination of literature method, observation method, interview method and mathematical statistics to conduct statistics, analysis, research and discussion on the application of technology. Combined the system application in targeted movement technology. A deep learning-based facial recognition psychological feature analysis method for the training and competition of classical wrestling after the implementation of the new rules is proposed. The experimental results of this paper showed that the proportion of natural emotions of male and female wrestlers was about 50%, indicating that the wrestler's mentality was relatively stable before the intense physical confrontation, and the test of the system also proved the stability of the system.

A study of information processing method for the situation recognition (상황인식을 위한 정보처리의 연구)

  • Park, Sangjoon;Lee, Jongchan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.275-276
    • /
    • 2019
  • 본 논문에서는 위험지역에서 수집 된 정보에 대한 정보처리 시스템에 대해 고려한다. 영상센서를 통하여 입력되는 영상정보를 실시간 분석 및 분류를 하여 사전에 정의된 상황과의 비교분석을 통하여 인지할 수 있는 상황인지 시스템을 설계한다.

  • PDF

Development of a Cooking Assistance System Based on Voice and Video Object Recognition (음성 및 동영상 객체 인식 기반 요리 보조 시스템 개발)

  • Lee, Jong-Hwan;Kwak, Hee-Woong;Park, Gi-Su;Song, Mi-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.727-729
    • /
    • 2022
  • 모바일 서비스에서 음성인식을 활용한 애플리케이션이 가져다 주는 편리함으로 레시피 애플리케이션에 접목시켜 데이터베이스를 사용한 레시피 추천, Google Video Intelligence API를 사용하여 객체 영상분할, Google Assistant를 활용한 음성인식을 기반으로 한 레시피 애플리케이션을 제공한다.