• 제목/요약/키워드: Video object segmentation

검색결과 20건 처리시간 0.116초

낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출 (Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences)

  • 박정우;김창익
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • v.33 no.10
    • /
    • pp.851-861
    • /
    • 2006
  • 영상을 낮은 피사계 심도로 찍는 카메라 기법은 전통적으로 널리 이용되는 영상 취득 기술이다. 이 방법을 사용하면 사진사가 사진이나 동영상을 찍을 때 영상의 관심 영역에만 포커스를 두어 선명하게 표현하고 나머지는 흐릿하게 함으로써 자신의 의도를 보는 이에게의 분명하게 전달 할 수 있다. 본 논문은 이러한 피사계 심도가 낮은 동영상 입력에 대하여 사용자의 도움 없이 포커스 된 비디오 객체를 추출하는 새로운 방법을 제안한다. 본 연구에서 제안하는 방법은 크게 두 모듈로 나뉜다. 첫 번째 모듈에서는 동영상의 첫 번째 프레임에 대해서 포커스 된 영역과 그렇지 않은 흐릿한 부분을 자동으로 구분하여 관심 물체만을 추출한다. 두 번째 모듈에서는 첫 번째 모듈에서 구한 관심 물체의 모델을 바탕으로 동영상 프레임에서의 관심 물체만을 실시간이나 실시간에 가깝게 추출한다. 본 논문에서 제안하는 방법은 가상현실(VR)이나 실감 방송, 비디오 인덱싱 시스템과 같은 여러 응용 분야에 효과적으로 적용될 수 있고, 이러한 유용성은 실험 결과를 통해 보였다.

비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘 (A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences)

  • 김준기;이호석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • v.8 no.4
    • /
    • pp.430-441
    • /
    • 2002
  • 비디오 객체 분할은 MPEG-4와 같은 객체기반 비디오 코딩을 위한 중요한 구성 요소이다. 본논문은 비디오 시퀸스에서 움직임 객체 분할을 위한 새로운 알고리즘과 VOP(Video Object Plane)추출 방법을 소개한다. 본 논문의 핵심은 시간적으로 변하는 움직임 객체 에지와 공간적 객체 에지 검출 결과를 효율적으로 조합하여 정확한 객체 경계를 추출하는 것이다. 이후 추출된 에지를 통하여 VOP를 생성한다. 본 알고리즘은 첫 번째 프레임을 기준영상으로 설정한 후 두 개의 연속된 프레임 사이의 움직임 픽셀 차이 값으로부터 시작된다. 차이영상을 추출한 후 차이영상에 Canny 에지 연산과 수리형태 녹임 연산(erosion)을 적용하고, 다음 프레임의 영상에 Canny 에지 연산과 수리형태 녹임 연산을 적용하여 두 프레임 사이의 에지 비교를 통하여 정확한 움직임 객체 경계를 추출한다. 이 과정에서 수리형태학 녹임 연산은 잘못된 객체 에지의 검출을 방지하는 작용을 한다. 두 영상 사이의 정확한 움직임 객체 에지(moving object edge)는 에지 크기를 조절하여 생성한다. 본 알고리즘은 픽셀 범위까지 고려한 정화한 객체의 경계를 얻음으로서 매우 쉬운 구현과 빠른 객체 추출을 보였다.

시공간 정보를 이용한 동영상 객체 분할 기법 (Video Object Segmentation Method Using Spatio-Temporal Information)

  • 오혁;최환수;정동석
    • 대한전자공학회:학술대회논문집
    • /
    • /
    • pp.349-352
    • /
    • 2000
  • 영상으로부터 의미있는 객체를 영역화하기 위하여, 움직임에 의한 시간적 정보를 이용하거나, 형태학적(Morphological) 기법과 같이 공간적 정보를 이용하는 방법이 있다. 그러나, 단지 시간적 정보나 공간적 정보만을 이용하는 방법은 그 한계를 가지고 있으며, 본 논문에서는 시공간 정보를 이용하여 분할하는 방법을 채택하였다. 시간적 분할에서는, 두 프레임에서 움직임 정보를 찾아내었던 기존 방법을 보완하여 연속되는 세 프레임을 사용하도록 하였다. 이렇게 하면 움직임이 미세한 영상에 대해서도 객체를 분리해 낼 가능성을 높일 수 있게 된다. 공간적 분할시에는, Watershed 알고리즘을 이용하는 형태학적 분할(Morphological Segmentation)[1][2]을 하게 되는데, 전처리 과정의 단일척도경사(Monoscale Gradient) 대신 다중척도 경사(Multiscale Gradient)[3][4]를 사용하여 미세한 경사는 누그러뜨리고 에지 부분의 경사만을 강조하게 하였다. 또한 개선된 Watershed 알고리즘을 제안하여 기존의 Watershed 알고리즘의 과분할 문제를 보완하였다.

  • PDF

약한 지도 학습의 다중 랜덤워크 기반 동영상 객체 분할 (Weekly Supervised Video Object Segmentation based on Multiple Random Walker)

  • 허민혁;임경선;김한울;고영준;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • /
    • pp.147-148
    • /
    • 2017
  • 본 논문에서는 간단한 사용자 입력과 다중 랜덤 워크(multiple random walker) 기법을 기반으로 동영상 내의 주요 객체를 분할하는 알고리즘을 제안한다. 우선 동영상의 첫 프레임에서 점 형태의 사용자의 입력을 받아 대략적인 객체와 배경의 위치를 얻고, Lab 색상의 측지거리를 이용하여 객체와 배경의 중요도 지도를 얻는다. 다음으로 영상을 슈퍼 픽셀 단위로 분할하고, 다중 랜덤 워크 기법을 적용하여 객체 분할을 수행한다. 랜덤 워크 기법 적용 시, 중요도 지도를 각 랜덤 워커의 초기 분포로 설정하고, 노드간 색상과 움직임 차이를 이용하여 전이 행렬을 계산한다. 마지막으로 결과를 정련한 뒤, 다음 프레임으로 분할 결과를 전파하여 시간적 일관성을 유지한다. 실험을 통하여 제안 기법이 기존 기법에 비하여 우수한 객체 분할 성능을 보임을 확인한다.

  • PDF

A Study on Color Fuzzy Decision Algorithm in Video Object Segmentation

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • In this paper, we propose the color fuzzy decision algorithm to face segmentation in a color image. Our algorithm can segment without the user's interaction by fuzzy decision marking. And it removes small parts such as a noise using wavelet morphology in the image obtained by applying the fuzzy decision algorithm. Also, it merges and chooses the face region in each quantization image through rough sets. This video object division algorithm is shown to be superior to a conventional algorithm.

비디오객체의 경계향상을 위한 VLSI 구조 (VLSI Architecture for Video Object Boundary Enhancement)

  • 김진상
    • 한국통신학회논문지
    • /
    • v.30 no.11A
    • /
    • pp.1098-1103
    • /
    • 2005
  • 에지나 윤곽 정보는 인간의 시각 시스템에 의하여 가장 잘 인식되며 객체의 인식과 지각에 사용되는 중요한 정보이다. 그러므로 비디오내의 객체간의 상호작용, 객체기반 코딩과 표현과 같은 응용을 위하여, 비디오객체의 추출과정에 에지정보를 적용하면 인간의 시각 시스템과 근접한 객체 경계를 얻을 수 있다. 대부분의 객체추출 방식은 연산량이 많고 반복적인 연산을 수행하므로 실시간 처리가 어렵다. 본 논문에서는 비디오객체 분할 과정에 에지 정보를 적용하여 정확한 객체 경계를 추출하는 VLSI 구조를 제안한다. 제안된 하드웨어 구조는 연산방식이 간단하므로 하드웨어로 쉽게 구현될 수 있으며, 제안된 VLSI 하드웨어 구조를 이용하면 객체기반 멀티미디어 응용을 위하여 실시간으로 비디오객체를 분할할 수 있다.

공간적 컬러 모델을 이용한 얼굴 객체 검출 시스템 연구 (A Study on Face Object Detection System using spatial color model)

  • 백덕수;변오성;백영현
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.30-38
    • /
    • 2006
  • 본 논문은 비디오 객체에서 사용자의 조작 없이 실시간적으로 원하는 영상 부분을 분할해 검출할 수 있도록 MPEG-7에서 제시한 컬러 공간 분포 HMMD 모델을 이용하였다. 여기서, 얼굴 이외의 부분을 잡음으로 간주하여, 제거하기 위해 웨이브렛 형태학을 적용하였으며, 러프 집합을 통하여 최적의 합성을 하였다. 본 논문에서 제안된 비디오 객체 검출 시스템은 다양한 크기의 영상에 적용하여 얼굴 객체를 기존의 알고리즘보다 정확하게 검출함으로서 우수함을 확인하였다.

윤곽선 정보를 이용한 동영상에서의 객체 추출 (Video Object Extraction Using Contour Information)

  • 김재광;이재호;김창익
    • 대한전자공학회논문지SP
    • /
    • v.48 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • 본 논문에서는 객체의 윤곽선 정보에 기반한 수정된 그래프컷(Graph-cut) 알고리즘을 이용하여 동영상에서 효율적으로 객체를 추출하는 방법을 제안한다. 이를 위해 먼저, 첫 프레임에서 자동 추출 알고리즘 이용하거나 사용자와의 상호작용을 통해 영상에서 객체를 분리한다. 객체의 형태 정보를 상속시키기 위해 이전 프fp임에서 추출된 객체 윤곽선의 움직임을 예측한다. 예측된 윤곽선을 기준으로 블록 단위 히스토그램 역투영(Block-based Histogram Back-projection) 알고리즘을 수행하여 다음 프레임의 각 픽셀에 대한 객체와 배경의 컬러 모델을 형성한다. 또한 윤곽선을 중심으로 전체 영상에 대한 로그함수 기반의 거리 변환 지도(Distance Transform Map)를 생성하고 인접 픽셀간의 연결(link)의 확률을 결정한다. 생성된 컬러 모델과 거리 변환 지도를 이용하여 그래프를 형성하고 에너지를 정의하며 이를 최소화하는 과정을 통해 객체를 추출한다. 다양한 영상들에 대한 실험 결과를 통해서 기존의 객체 추출 방법보다 제안하는 방법이 객체를 보다 정확하게 추출함을 확인할 수 있다.

몰입형 화상 회의를 위한 강건한 객체 추출 방법 (A Robust Object Extraction Method for Immersive Video Conferencing)

  • 안일구;오대영;김재광;김창익
    • 대한전자공학회논문지SP
    • /
    • v.48 no.2
    • /
    • pp.11-23
    • /
    • 2011
  • 본 논문에서 우리는 실시간 성능이 요구되는 비디오 화상회의 시스템을 위해 사전정보 없이 정확하면서도 완전히 자동으로 비디오 객체를 추출하는 방법을 제안한다. 제안하는 방법은 두 단계로 이루어진다: 1) 초기 프레임에서의 정확한 객체 추출, 2) 객체 추출 결과를 이용한 그 이후 프레임에서의 실시간 객체 추출. 초기 프레임에서의 객체 추출은 초기 프레임들의 차영상으로부터 구한 에지들을 누적시킨 누적 에지맵 생성으로부터 시작된다. 즉, 객체의 초기 움직임의 누적으로부터 객체의 형상을 추측하고자 하는 것이다. 이 추측된 형상은 그래프 컷(Graph-Cut) 영상 분할을 위한 객체 씨드(seeds)와 배경 씨드를 할당하는데 이용된다. 그래프 컷 기반 객체 추출 이후 프레임부터는 객체 추출 결과와 연속된 프레임의 차영상의 에지맵을 이용하여 실시간 객체 추출이 수행된다. 실험결과를 통해 제안하는 방법이 이전 연구들과 달리 VGA 크기의 비디오에 대해서도 실시간으로 동작함을 보이고, 따라서 몰입적인 비디오 화상회의 시스템의 개발을 위한 유용한 도구임을 보이고자 한다.

새로운 객체 외곽선 연결 방법을 사용한 비디오 객체 분할 (Video object segmentation using a novel object boundary linking)

  • 이호석
    • 정보처리학회논문지B
    • /
    • v.13B no.3
    • /
    • pp.255-274
    • /
    • 2006
  • 비디오에서 움직이는 객체의 외곽선은 객체를 정확하게 분할하기 위하여 매우 중요하다. 그러나 움직이는 객체의 외곽선에는 단락된 외곽선들이 존재하게 된다. 우리는 단락된 외곽선을 연결할 수 있는 새로운 외곽선 연결 알고리즘을 개발하였다. 외곽선 연결 알고리즘은 단락된 외곽선의 말단 픽셀에 사분면을 형성하고 동심원을 구성하면서 반지름 내에서 다른 말단 픽셀을 찾는 탐색을 전진하면서 수행한다. 외곽선 연결 알고리즘은 객체의 외곽선에서 가장 짧게 외곽선을 연결한다. 그리고 시스템은 비디오로부터 배경을 구하여 저장한다. 시스템은 외곽선 연결로부터 객체 마스크를 생성하고, 배경된 저장으로부터 또 하나의 객체 마스크를 생성하여 이 두 개의 객체 마스크를 보완적으로 사용하여 움직이는 객체를 분할한다. 논문의 주요 장점은 정확한 객체 분할을 위한 새로운 객체 외곽선 연결 알고리즘의 개발이다. 제안된 알고리즘은 개발된 새로운 객체 외곽선 연결 알고리즘과 배경 저장을 이용하여 정확한 객체 분할, 다중 객체 분할, 내부에 구멍이 존재하는 객체의 분할, 가느다란 객체의 분할, 그리고 복잡한 배경을 가진 객체를 자동으로 분할하여 보여주었다. 우리는 알고리즘들을 표준 MPEG-4 실험 영상과 카메라로 입력된 실제 영상을 가지고 실험하였다. 제안된 알고리즘들은 매우 효율이 좋으며 펜티엄-IV 3.4GHz CPU에서 평균적으로 QCIF 영상을 1초당 70.20 프레임 그리고 CIF 영상을 1초당 19.7 프레임을 실시간 객체 응용을 위하여 처리할 수 있다.