• 제목/요약/키워드: Video detection

검색결과 1,347건 처리시간 0.025초

Deep Learning Object Detection to Clearly Differentiate Between Pedestrians and Motorcycles in Tunnel Environment Using YOLOv3 and Kernelized Correlation Filters

  • Mun, Sungchul;Nguyen, Manh Dung;Kweon, Seokkyu;Bae, Young Hoon
    • 방송공학회논문지
    • /
    • 제24권7호
    • /
    • pp.1266-1275
    • /
    • 2019
  • With increasing criminal rates and number of CCTVs, much attention has been paid to intelligent surveillance system on the horizon. Object detection and tracking algorithms have been developed to reduce false alarms and accurately help security agents immediately response to undesirable changes in video clips such as crimes and accidents. Many studies have proposed a variety of algorithms to improve accuracy of detecting and tracking objects outside tunnels. The proposed methods might not work well in a tunnel because of low illuminance significantly susceptible to tail and warning lights of driving vehicles. The detection performance has rarely been tested against the tunnel environment. This study investigated a feasibility of object detection and tracking in an actual tunnel environment by utilizing YOLOv3 and Kernelized Correlation Filter. We tested 40 actual video clips to differentiate pedestrians and motorcycles to evaluate the performance of our algorithm. The experimental results showed significant difference in detection between pedestrians and motorcycles without false positive rates. Our findings are expected to provide a stepping stone of developing efficient detection algorithms suitable for tunnel environment and encouraging other researchers to glean reliable tracking data for smarter and safer City.

병렬처리 그래픽 프로세서와 범용 프로세서에서의 보행자 검출 처리 속도 비교 (Comparison Speed of Pedestrian Detection with Parallel Processing Graphic Processor and General Purpose Processor)

  • 박장식
    • 한국전자통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.239-246
    • /
    • 2015
  • 영상기반 객체 검출은 지능형 CCTV 시스템을 구현하는데 있어 기본적인 기술이다. 객체 검출을 위하여 다양한 특징점과 알고리즘이 개발되었으나, 성능에 비례하여 계산량이 많다. 본 논문에서는 GPU와 CPU를 활용하여 객체 검출 알고리즘의 성능을 비교하였다. 일반적으로 보행자 검출에 널리 사용되고 있는 Adaboost 알고리즘과 SVM 알고리즘을 각각 CPU와 GPU에 맞도록 구현하고 동일 영상에 대하여 검출 처리 속도를 비교하였다. Adaboost 알고리즘과 SVM 알고리즘에 대하여 처리 속도를 비교한 결과 GPU가 CPU에 비하여 약 4 배 정도 빠른 처리를 할 수 있음을 확인하였다.

MPEG 비디오의 특성 추출을 이용한 효과적인 장면 전환 검출 기법 (Effective scene change detection methods using characteristics of MPEG video)

  • 곽영경;최윤석;고성제
    • 한국통신학회논문지
    • /
    • 제24권8B호
    • /
    • pp.1567-1576
    • /
    • 1999
  • 본 논문에서는 압축되어 있는 MPEG 비디오 시퀀스로부터 DCT의 AC 계수를 이용한 에지 영상을 구하여 급격한 장면의 전환을 검출하는 방법과 매크로블록 타입 정보를 이용하여 점진적 장면 전환인 디졸브(dissolve) 구간을 검출하는 기법을 제안하였다. 에지 추출에 기반한 장면 전환 검출 기법은 밝기의 변화에 덜 민감하며, AC 성분을 이용하면 DC 성분을 이용한 경우보다 원영상을 더욱 잘 표현하는 에지를 추출할 수 있으므로, 보다 정확한 장면 전환을 검출할 수 있다. 제안한 디졸브 검출 기법에서는 영상을 복원하지 않고, MPEG 비트스트림 내의 매크로블록 타입 정보로부터 계산된 인트라 매크로 블록의 개수를 이용하기 때문에 적은 계산량으로 디졸브를 검출할 수 있다. 제안한 장면 전환 검출 방법은 기존의 방법들에 비해서 성능이 우수함을 실험을 통해 입증하였다.

  • PDF

영상기반 교통정보 추출 알고리즘에 관한 연구 (A Study On the Image Based Traffic Information Extraction Algorithm)

  • 하동문;이종민;김용득
    • 대한교통학회지
    • /
    • 제19권6호
    • /
    • pp.161-170
    • /
    • 2001
  • 차량검출은 교통량 관측(모니터링)을 위해서 필요한 가장 기본적인 요소이다. 영상을 기반으로 한 교통정보추출 시스템은 다른 방식을 이용하는 시스템들과 비교했을 때 몇 가지 두드러진 장점을 가지고 있다. 그러나 영상기반 시스템에서는 영상에 포함된 그림자가 차량검출의 정확도를 저해하는 요소로 작용하는 데, 특히 이동 중인 차량에 의해서 발생하는 환성 그림자는 심각한 성능저하를 야기할 수 있다. 본 논문에서는 차량검출과 그림자 영향 제거를 위해서 배경 빼기와 에지 검출을 결합한 새로운 접근방법을 제안하였다. 제안한 방법은 노변의 지형지물에 의해서 발생하는 비활성 그림자가 크게 증가하는 상황에서도, 98(%)이상의 차량검출 정확도를 나타내었다. 본 논문에서 제안한 차량검출 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차로의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통정보를 추출하였다.

  • PDF

Collective Interaction Filtering Approach for Detection of Group in Diverse Crowded Scenes

  • Wong, Pei Voon;Mustapha, Norwati;Affendey, Lilly Suriani;Khalid, Fatimah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.912-928
    • /
    • 2019
  • Crowd behavior analysis research has revealed a central role in helping people to find safety hazards or crime optimistic forecast. Thus, it is significant in the future video surveillance systems. Recently, the growing demand for safety monitoring has changed the awareness of video surveillance studies from analysis of individuals behavior to group behavior. Group detection is the process before crowd behavior analysis, which separates scene of individuals in a crowd into respective groups by understanding their complex relations. Most existing studies on group detection are scene-specific. Crowds with various densities, structures, and occlusion of each other are the challenges for group detection in diverse crowded scenes. Therefore, we propose a group detection approach called Collective Interaction Filtering to discover people motion interaction from trajectories. This approach is able to deduce people interaction with the Expectation-Maximization algorithm. The Collective Interaction Filtering approach accurately identifies groups by clustering trajectories in crowds with various densities, structures and occlusion of each other. It also tackles grouping consistency between frames. Experiments on the CUHK Crowd Dataset demonstrate that approach used in this study achieves better than previous methods which leads to latest results.

A new approach for content-based video retrieval

  • Kim, Nac-Woo;Lee, Byung-Tak;Koh, Jai-Sang;Song, Ho-Young
    • International Journal of Contents
    • /
    • 제4권2호
    • /
    • pp.24-28
    • /
    • 2008
  • In this paper, we propose a new approach for content-based video retrieval using non-parametric based motion classification in the shot-based video indexing structure. Our system proposed in this paper has supported the real-time video retrieval using spatio-temporal feature comparison by measuring the similarity between visual features and between motion features, respectively, after extracting representative frame and non-parametric motion information from shot-based video clips segmented by scene change detection method. The extraction of non-parametric based motion features, after the normalized motion vectors are created from an MPEG-compressed stream, is effectively fulfilled by discretizing each normalized motion vector into various angle bins, and by considering the mean, variance, and direction of motion vectors in these bins. To obtain visual feature in representative frame, we use the edge-based spatial descriptor. Experimental results show that our approach is superior to conventional methods with regard to the performance for video indexing and retrieval.

ServerNet and ATM Interconnects: Comparison for Compressed Video Transmission

  • Ashfaq Hossain;Kang, Sung-Mo;Robert Horst
    • Journal of Communications and Networks
    • /
    • 제1권2호
    • /
    • pp.134-142
    • /
    • 1999
  • We have developed fully functional Video Server and Client applications which can transmit, receive, decompress and display compressed video over various networks. Our video trans-port allows dynamic rate control feedback, loss detection, and repair requests from Clients to the Server. Our experiments show how feedvack-before-degradation scheme for rate adaptation maintains good display frame-rate for video playback. We show how the playback degradation(reduction in display frame-rate) oc-curs and what happens if corrective measures are not taken to im-prove the situation. The degradation is attributed to the increased internal kernel buffering which consumes scarce CPU resources. We demontrate with our experimental results that ServerNet, with improved hardware delivery guarantees, can significantly reduce host CPU resource consumption while serving video streams. We present the maximum number of streams which can be served for each of ATM and ServerNet interconnects. The appropriate user-level packet size for the video server are also determined for each case.

  • PDF

Security Verification of Video Telephony System Implemented on the DM6446 DaVinci Processor

  • Ghimire, Deepak;Kim, Joon-Cheol;Lee, Joon-Whoan
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper we propose a method for verifying video in a video telephony system implemented in DM6446 DaVinci Processor. Each frame is categorized either error free frame or error frame depending on the predefined criteria. Human face is chosen as a basic means for authenticating the video frame. Skin color based algorithm is implemented for detecting the face in the video frame. The video frame is classified as error free frame if there is single face object with clear view of facial features (eyes, nose, mouth etc.) and the background of the image frame is not different then the predefined background, otherwise it will be classified as error frame. We also implemented the image histogram based NCC (Normalized Cross Correlation) comparison for video verification to speed up the system. The experimental result shows that the system is able to classify frames with 90.83% of accuracy.

다시점 영상에 대한 이상 물체 탐지 기반 영상 시놉시스 프레임워크 (Abnormal Object Detection-based Video Synopsis Framework in Multiview Video)

  • 팔라시 잉글;유진용;김영갑
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.213-216
    • /
    • 2022
  • There has been an increase in video surveillance for public safety and security, which increases the video data, leading to analysis, and storage issues. Furthermore, most surveillance videos contain an empty frame of hours of video footage; thus, extracting useful information is crucial. The prominent framework used in surveillance for efficient storage and analysis is video synopsis. However, the existing video synopsis procedure is not applicable for creating an abnormal object-based synopsis. Therefore, we proposed a lightweight synopsis methodology that initially detects and extracts abnormal foreground objects and their respective backgrounds, which is stitched to construct a synopsis.

Real-Time Apartment Building Detection and Tracking with AdaBoost Procedure and Motion-Adjusted Tracker

  • Hu, Yi;Jang, Dae-Sik;Park, Jeong-Ho;Cho, Seong-Ik;Lee, Chang-Woo
    • ETRI Journal
    • /
    • 제30권2호
    • /
    • pp.338-340
    • /
    • 2008
  • In this letter, we propose a novel approach to detecting and tracking apartment buildings for the development of a video-based navigation system that provides augmented reality representation of guidance information on live video sequences. For this, we propose a building detector and tracker. The detector is based on the AdaBoost classifier followed by hierarchical clustering. The classifier uses modified Haar-like features as the primitives. The tracker is a motion-adjusted tracker based on pyramid implementation of the Lukas-Kanade tracker, which periodically confirms and consistently adjusts the tracking region. Experiments show that the proposed approach yields robust and reliable results and is far superior to conventional approaches.

  • PDF