• 제목/요약/키워드: Video Object Detection

검색결과 358건 처리시간 0.04초

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Online Video Synopsis via Multiple Object Detection

  • Lee, JaeWon;Kim, DoHyeon;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.19-28
    • /
    • 2019
  • In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.

비디오 모니터링 환경에서 정확한 돼지 탐지 (Accurate Pig Detection for Video Monitoring Environment)

  • 안한세;손승욱;유승현;서유일;손준형;이세준;정용화;박대희
    • 한국멀티미디어학회논문지
    • /
    • 제24권7호
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

Resource Efficient AI Service Framework Associated with a Real-Time Object Detector

  • Jun-Hyuk Choi;Jeonghun Lee;Kwang-il Hwang
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.439-449
    • /
    • 2023
  • This paper deals with a resource efficient artificial intelligence (AI) service architecture for multi-channel video streams. As an AI service, we consider the object detection model, which is the most representative for video applications. Since most object detection models are basically designed for a single channel video stream, the utilization of the additional resource for multi-channel video stream processing is inevitable. Therefore, we propose a resource efficient AI service framework, which can be associated with various AI service models. Our framework is designed based on the modular architecture, which consists of adaptive frame control (AFC) Manager, multiplexer (MUX), adaptive channel selector (ACS), and YOLO interface units. In order to run only a single YOLO process without regard to the number of channels, we propose a novel approach efficiently dealing with multi-channel input streams. Through the experiment, it is shown that the framework is capable of performing object detection service with minimum resource utilization even in the circumstance of multi-channel streams. In addition, each service can be guaranteed within a deadline.

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.

계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템 (Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID)

  • 이상현;양성훈;오승진;강진범
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.89-106
    • /
    • 2022
  • 최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.

비디오 Object Detection에서의 연산량 감소를 위한 방법 (Method for reducing computational amount in video object detection)

  • 김도영;강인영;김연수;최진원;박구만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.723-726
    • /
    • 2021
  • 현재 단일 이미지에서 Object Detection 성능은 매우 좋은 편이다. 하지만 동영상에서는 처리 속도가 너무 느리고 임베디드 시스템에서는 real-time이 힘든 상황이다. 연구 논문에서는 하이엔드 GPU에서 다른 기능 없이 YOLO만 구동했을 때 real-time이 가능하다고 하지만 실제 사용자들은 상대적으로 낮은 사양의 GPU를 사용하거나 CPU를 사용하기 때문에 일반적으로는 자연스러운 real-time을 하기가 힘들다. 본 논문에서는 이러한 제한점을 해결하고자 계산량이 많은 Object Detection model 사용을 줄이는 방안은 제시하였다. 현재 Video영상에서 Object Detection을 수행할 때 매 frame마다 YOLO모델을 구동하는 것에서 YOLO 사용을 줄임으로써 계산 효율을 높였다. 본 논문의 알고리즘은 카메라가 움직이거나 배경이 바뀌는 상황에서도 사용이 가능하다. 속도는 최소2배에서 ~10배이상까지 개선되었다.

Robust Real-time Detection of Abandoned Objects using a Dual Background Model

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.771-788
    • /
    • 2020
  • Detection of abandoned objects for smart video surveillance should be robust and accurate in various situations with low computational costs. This paper presents a new algorithm for abandoned object detection based on the dual background model. Through the template registration of a candidate stationary object and presence authentication methods presented in this paper, we can handle some complex cases such as occlusions, illumination changes, long-term abandonment, and owner's re-attendance as well as general detection of abandoned objects. The proposed algorithm also analyzes video frames at specific intervals rather than consecutive video frames to reduce the computational overhead. For performance evaluation, we experimented with the algorithm using the well-known PETS2006, ABODA datasets, and our video dataset in a live streaming environment, which shows that the proposed algorithm works well in various situations.

비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거 (Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System)

  • 이영숙;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.574-578
    • /
    • 2009
  • 정지 영상이나 비디오 영상 시퀀스에서 배경 영상으로부터 움직이는 관심 물체를 구별하기 위한 실시간 물체 검출은 물체의 위치 추적과 인식에 있어 필수적인 단계이다. 물체 분할 후에 그림자 영역이 움직이는 물체 영역에 포함되어지기 때문에 그림자는 물체의 일부분 혹은 움직이는 물체로 오분류될 수 있다. 이러한 이유로 그림자 제거 알고리즘은 움직이는 물체 검출 및 추적 시스템의 결과에 중요한 역할을 한다. 이 문제점들을 해결하기 위해 본 논문에서는 움직이는 물체의 특징과 색상공간에서 그림자의 특징에 기반을 둔 정확한 물체 검출과 그림자 제거 알고리즘을 제안한다. 실험결과는 제안 알고리즘이 실험 영상에서 물체 검출과 그림자 제거에 대해 효과적인 것을 알 수가 있다.

  • PDF