CCTV(Closed-circuit Television)는 사고 예방 및 시설 안전을 위해 매년 설치대수가 증가함에 따라 1인당 CCTV에 노출되는 횟수가 증대되고 있으며, 노출되는 대상의 프라이버시 보호를 위해 지능형 영상감시 시스템 기술이 각광받고 있다. 지능형 영상감시 시스템은 촬영된 영상 데이터에 대한 단순한 식별에서 피사체의 행동 유형과 현장 상황 판단 등을 수행하거나, 촬영된 피사체의 정보가 노출될 수 있는 정보를 외부로 유출되지 않도록 프라이버시 보호를 위한 처리 과정을 진행한다. 제안된 기술은 영상감시 시스템에 적용되어 영상감시 시스템으로부터 촬영된 원본 영상 정보를 유사 영상 정보로 변환함으로서 외부에 원본 영상 정보가 유출되지 않도록 하는 기술이다. 본문에서는 미리 설정된 유사도에 근접하는 가상의 얼굴 이미지를 삽입하는 영상 변환메커니즘을 제안한다.
Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.
As a growing number of individuals are exposed to surveillance cameras, the need to prevent captured videos from being used inappropriately has increased. Privacy-related information can be protected through video encryption during transmission or storage, and several algorithms have been proposed for such purposes. However, the simple way of evaluating the security by counting the number of brute-force trials is not proper for measuring the security of video encryption algorithms, considering that attackers can devise specially crafted attacks for specific purposes by exploiting the characteristics of the target video codec. In this paper, we introduce a new attack for recovering contour information from encrypted H.264 video. The attack can thus be used to extract face outlines for the purpose of personal identification. We analyze the security of previous video encryption schemes against the proposed attack and show that the security of these schemes is lower than expected in terms of privacy protection. To enhance security, an advanced block shuffling method is proposed, an analysis of which shows that it is more secure than the previous method and can be an improvement against the proposed attack.
Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.
This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.
International Journal of Computer Science & Network Security
/
제21권4호
/
pp.131-139
/
2021
In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.
스마트폰이 널리 보급됨에 따라 누구나 쉽게 사진과 동영상을 촬영하고 배포할 수 있는 시대가 되었다. 개인이 스마트폰으로 촬영한 동영상은 중요한 수사 단서나 증거로 활용되고 이때 동영상이 특정 스마트폰으로 촬영되었음을 입증해야 하는 상황이 발생한다. 이를 위해 기존 연구들에서 제시한 다양한 방식의 fingerprint 기법을 활용할 수 있다. 하지만 fingerprint 기법을 사용한 결과의 신빙성을 보강해야 하거나 그 기법을 활용할 수 없는 상황들이 존재한다. 따라서 fingerprint 기법의 사용 이전에 스마트폰 포렌식 조사가 선행되어야 하고, 동영상 파일의 메타데이터 정보를 정리한 데이터베이스를 구축할 필요가 있다. 본 논문에서는 동영상 촬영이 스마트폰에 남기는 아티팩트와 상기한 데이터베이스에 대해 설명하고자 한다.
최근 데이터 기반 산업계의 오랜 숙원이었던 개인정보 비식별화가 2020년 8월 데이터3법[1]이 개정되어 명시화 되었다. 4차 산업시대의 원유[2]라 불리는 데이터를 산업 분야에서 활성화할 수 있는 기틀이 되었다. 하지만, 일각에서는 비식별개인정보(personally non-identifiable information)가 정보주체의 기본권 침해를 우려하고 있는 실정이다[3]. 이에 개인정보 비식별화 자동화 도구인 Batch De-Identification Tool을 개발 연구를 수행하였다. 본 연구에서는 첫 번째로, 학습용 데이터 구축을 위해 사람 얼굴(눈, 코, 입) 및 다양한 해상도의 자동차 번호판 등을 라벨링하는 이미지 라벨링 도구를 개발하였다. 두 번째로, 객체 인식 모델을 학습하여 객체 인식 모듈을 실행함으로써 개인정보 비식별화를 수행할 수 있도록 하였다. 본 연구의 결과로 개발된 개인정보 비식별화 자동화 도구는 온라인 서비스를 통해 개인정보 침해 요소를 사전에 제거할 수 있는 가능성을 보여주었다. 이러한 결과는 데이터 기반 산업계에서 개인정보 보호와 활용의 균형을 유지하면서도 데이터의 가치를 극대화할 수 있는 가능성을 제시하고 있다
최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.
감시카메라 환경에서 군중의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 H.264 압축과정에서의 움직임 벡터 정보를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지기로 설계하였다. 제안된 시스템은 H.264 압축 과정에서 얻어지는 움직임 벡터를 이용함으로써, 실시간성을 보장하며 SVDD의 점증적 갱신 학습 능력으로 인하여 비정상 집단행동 데이터베이스의 변화에도 능동적으로 적응할 수 있다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.