• 제목/요약/키워드: Video Face Identification

검색결과 20건 처리시간 0.022초

프라이버시 침해 방지를 위한 얼굴 정보 변환 메커니즘 (Face Information Conversion Mechanism to Prevent Privacy Infringement)

  • 김진수;김상춘;박남제
    • 한국정보기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.115-122
    • /
    • 2019
  • CCTV(Closed-circuit Television)는 사고 예방 및 시설 안전을 위해 매년 설치대수가 증가함에 따라 1인당 CCTV에 노출되는 횟수가 증대되고 있으며, 노출되는 대상의 프라이버시 보호를 위해 지능형 영상감시 시스템 기술이 각광받고 있다. 지능형 영상감시 시스템은 촬영된 영상 데이터에 대한 단순한 식별에서 피사체의 행동 유형과 현장 상황 판단 등을 수행하거나, 촬영된 피사체의 정보가 노출될 수 있는 정보를 외부로 유출되지 않도록 프라이버시 보호를 위한 처리 과정을 진행한다. 제안된 기술은 영상감시 시스템에 적용되어 영상감시 시스템으로부터 촬영된 원본 영상 정보를 유사 영상 정보로 변환함으로서 외부에 원본 영상 정보가 유출되지 않도록 하는 기술이다. 본문에서는 미리 설정된 유사도에 근접하는 가상의 얼굴 이미지를 삽입하는 영상 변환메커니즘을 제안한다.

학습기반 효율적인 얼굴 검출 시스템 설계 (Design of an efficient learning-based face detection system)

  • 김현식;김완태;박병준
    • 디지털산업정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

Privacy-Preserving H.264 Video Encryption Scheme

  • Choi, Su-Gil;Han, Jong-Wook;Cho, Hyun-Sook
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.935-944
    • /
    • 2011
  • As a growing number of individuals are exposed to surveillance cameras, the need to prevent captured videos from being used inappropriately has increased. Privacy-related information can be protected through video encryption during transmission or storage, and several algorithms have been proposed for such purposes. However, the simple way of evaluating the security by counting the number of brute-force trials is not proper for measuring the security of video encryption algorithms, considering that attackers can devise specially crafted attacks for specific purposes by exploiting the characteristics of the target video codec. In this paper, we introduce a new attack for recovering contour information from encrypted H.264 video. The attack can thus be used to extract face outlines for the purpose of personal identification. We analyze the security of previous video encryption schemes against the proposed attack and show that the security of these schemes is lower than expected in terms of privacy protection. To enhance security, an advanced block shuffling method is proposed, an analysis of which shows that it is more secure than the previous method and can be an improvement against the proposed attack.

다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석 (Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

Automatic Person Identification using Multiple Cues

  • Swangpol, Danuwat;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1202-1205
    • /
    • 2005
  • This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.

  • PDF

Abnormal Crowd Behavior Detection Using Heuristic Search and Motion Awareness

  • Usman, Imran;Albesher, Abdulaziz A.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.131-139
    • /
    • 2021
  • In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.

스마트폰으로 촬영된 동영상의 출처 식별에 대한 연구 (A Study on Identification of the Source of Videos Recorded by Smartphones)

  • 김현승;최종현;이상진
    • 정보보호학회논문지
    • /
    • 제26권4호
    • /
    • pp.885-894
    • /
    • 2016
  • 스마트폰이 널리 보급됨에 따라 누구나 쉽게 사진과 동영상을 촬영하고 배포할 수 있는 시대가 되었다. 개인이 스마트폰으로 촬영한 동영상은 중요한 수사 단서나 증거로 활용되고 이때 동영상이 특정 스마트폰으로 촬영되었음을 입증해야 하는 상황이 발생한다. 이를 위해 기존 연구들에서 제시한 다양한 방식의 fingerprint 기법을 활용할 수 있다. 하지만 fingerprint 기법을 사용한 결과의 신빙성을 보강해야 하거나 그 기법을 활용할 수 없는 상황들이 존재한다. 따라서 fingerprint 기법의 사용 이전에 스마트폰 포렌식 조사가 선행되어야 하고, 동영상 파일의 메타데이터 정보를 정리한 데이터베이스를 구축할 필요가 있다. 본 논문에서는 동영상 촬영이 스마트폰에 남기는 아티팩트와 상기한 데이터베이스에 대해 설명하고자 한다.

인공지능 학습용 데이터의 개인정보 비식별화 자동화 도구 개발 연구 - 영상데이터기반 - (Research on the development of automated tools to de-identify personal information of data for AI learning - Based on video data -)

  • 이현주;이승엽;전병훈
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.56-67
    • /
    • 2023
  • 최근 데이터 기반 산업계의 오랜 숙원이었던 개인정보 비식별화가 2020년 8월 데이터3법[1]이 개정되어 명시화 되었다. 4차 산업시대의 원유[2]라 불리는 데이터를 산업 분야에서 활성화할 수 있는 기틀이 되었다. 하지만, 일각에서는 비식별개인정보(personally non-identifiable information)가 정보주체의 기본권 침해를 우려하고 있는 실정이다[3]. 이에 개인정보 비식별화 자동화 도구인 Batch De-Identification Tool을 개발 연구를 수행하였다. 본 연구에서는 첫 번째로, 학습용 데이터 구축을 위해 사람 얼굴(눈, 코, 입) 및 다양한 해상도의 자동차 번호판 등을 라벨링하는 이미지 라벨링 도구를 개발하였다. 두 번째로, 객체 인식 모델을 학습하여 객체 인식 모듈을 실행함으로써 개인정보 비식별화를 수행할 수 있도록 하였다. 본 연구의 결과로 개발된 개인정보 비식별화 자동화 도구는 온라인 서비스를 통해 개인정보 침해 요소를 사전에 제거할 수 있는 가능성을 보여주었다. 이러한 결과는 데이터 기반 산업계에서 개인정보 보호와 활용의 균형을 유지하면서도 데이터의 가치를 극대화할 수 있는 가능성을 제시하고 있다

  • PDF

계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템 (Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID)

  • 이상현;양성훈;오승진;강진범
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.89-106
    • /
    • 2022
  • 최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.

H.264 압축과 SVDD를 이용한 영상 감시 시스템에서의 비정상 집단행동 탐지 (Abnormal Crowd Behavior Detection via H.264 Compression and SVDD in Video Surveillance System)

  • 오승근;이종욱;정용화;박대희
    • 정보보호학회논문지
    • /
    • 제21권6호
    • /
    • pp.183-190
    • /
    • 2011
  • 감시카메라 환경에서 군중의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 H.264 압축과정에서의 움직임 벡터 정보를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지기로 설계하였다. 제안된 시스템은 H.264 압축 과정에서 얻어지는 움직임 벡터를 이용함으로써, 실시간성을 보장하며 SVDD의 점증적 갱신 학습 능력으로 인하여 비정상 집단행동 데이터베이스의 변화에도 능동적으로 적응할 수 있다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.