• Title/Summary/Keyword: Video Content Indexing

Search Result 75, Processing Time 0.026 seconds

Automation of News Video Indexing for Content-Based Retrieval (내용기반 검색을 위한 뉴스 비디오 인덱싱의 자동화)

  • 이동섭;이지연;신성윤;전근환;배석찬;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.507-510
    • /
    • 1998
  • 다양한 분야에서 중요하게 사용될 수 있는 뉴스 비디오 데이터베이스를 구축하기 위해서는 비디오 색인의 자동화에 관한 연구가 필연적이다. 본 논문에서는 뉴스 비디오 색인을 자동화하는 방법으로, 이전에 제안한 컷 추출 방법을 이용하였다. 컷에 의해 추출된 키 프레임에서 앵커 인식 알고리즘으로 앵커 프레임을 자동으로 추출하여 색인을 부여하는 방법으로 비디오 스트림에 대한 색인을 자동화하였다. 구성되는 색인 구조의 형태는 앵커 프레임들이 시간에 따른 사건의 연결이 되고, 앵커 프레임 내에서는 종속되는 키 프레임들을 중심으로 원형을 형성한다. 이들 각각을 논리적으로 통합하면 사용자의 관점에 따라 여러 가지 방법으로 브라우징되며, 사용자가 원하는 뉴스 비디오 씬들을 쉽게 선택하여 볼 수 있는 특징을 제공하는 장점을 부여한다. 또한, 색인화 된 비디오 스트림을 이용하면 자동적으로 비디오 편집을 수행 할 수 있는 비디오 저작도구의 기반을 제공할 수 있다.

  • PDF

Improvement of Retrieval Performance Using Adaptive Weighting of Key Frame Features (키 프레임 특징들에 적응적 가중치 부여를 이용한 검색 성능 개선)

  • Kim, Kang-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Video retrieval and indexing are performed by comparing feature similarities between key frames in shot after detecting a scene change and extracting key frames from the shot. Typical image features such as color, shape, and texture are used in content-based video and image retrieval. Many approaches for integrating these features have been studied. However, the issue of these approaches is how to appropriately assign weighting of key frame features at query time. Therefore, we propose a new video retrieval method using adaptively weighted image features. We performed computer simulations in test databases which consist of various kinds of key frames. The experimental results show that the proposed method has better performance than previous works in respect to several performance evaluations such as precision vs. recall, retrieval efficiency, and ranking measure.

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

XML Repository System Using DBMS and IRS

  • Kang, Hyung-Il;Yoo, Jae-Soo;Lee, Byoung-Yup
    • International Journal of Contents
    • /
    • v.3 no.3
    • /
    • pp.6-14
    • /
    • 2007
  • In this paper, we design and implement a XML Repository System(XRS) that exploits the advantages of DBMSs and IRSs. Our scheme uses BRS to support full text indexing and content-based queries efficiently, and ORACLE to store XML documents, multimedia data, DTD and structure information. We design databases to manage XML documents including audio, video, images as well as text. We employ the non-composition model when storing XML documents into ORACLE. We represent structured information as ETID(Element Type Id), SORD(Sibling ORDer) and SSORD(Same Sibling ORDer). ETID is a unique value assigned to each element of DTD. SORD and SSORD represent an order information between sibling nodes and an order information among the sibling nodes with the same element respectively. In order to show superiority of our XRS, we perform various experiments in terms of the document loading time, document extracting time and contents retrieval time. It is shown through experiments that our XRS outperforms the existing XML document management systems. We also show that it supports various types of queries through performance experiments.

Design and Implementation of High-dimensional Index Structure for the support of Concurrency Control (필터링에 기반한 고차원 색인구조의 동시성 제어기법의 설계 및 구현)

  • Lee, Yong-Ju;Chang, Jae-Woo;Kim, Hang-Young;Kim, Myung-Joon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Recently, there have been many indexing schemes for multimedia data such as image, video data. But recent database applications, for example data mining and multimedia database, are required to support multi-user environment. In order for indexing schemes to be useful in multi-user environment, a concurrency control algorithm is required to handle it. So we propose a concurrency control algorithm that can be applied to CBF (cell-based filtering method), which uses the signature of the cell for alleviating the dimensional curse problem. In addition, we extend the SHORE storage system of Wisconsin university in order to handle high-dimensional data. This extended SHORE storage system provides conventional storage manager functions, guarantees the integrity of high-dimensional data and is flexible to the large scale of feature vectors for preventing the usage of large main memory. Finally, we implement the web-based image retrieval system by using the extended SHORE storage system. The key feature of this system is platform-independent access to the high-dimensional data as well as functionality of efficient content-based queries. Lastly. We evaluate an average response time of point query, range query and k-nearest query in terms of the number of threads.