• Title/Summary/Keyword: Video Content Indexing

Search Result 75, Processing Time 0.028 seconds

An Efficient Object Extraction Scheme for Low Depth-of-Field Images (낮은 피사계 심도 영상에서 관심 물체의 효율적인 추출 방법)

  • Park Jung-Woo;Lee Jae-Ho;Kim Chang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1139-1149
    • /
    • 2006
  • This paper describes a novel and efficient algorithm, which extracts focused objects from still images with low depth-of-field (DOF). The algorithm unfolds into four modules. In the first module, a HOS map, in which the spatial distribution of the high-frequency components is represented, is obtained from an input low DOF image [1]. The second module finds OOI candidate by using characteristics of the HOS. Since it is possible to contain some holes in the region, the third module detects and fills them. In order to obtain an OOI, the last module gets rid of background pixels in the OOI candidate. The experimental results show that the proposed method is highly useful in various applications, such as image indexing for content-based retrieval from huge amounts of image database, image analysis for digital cameras, and video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing system.

  • PDF

A Study on Digital Video Library Development for Semantic-Sensitive Retrieval (시맨틱 검색을 위한 디지털 비디오 라이브러리 구축에 관한 연구)

  • Jang, Sang-Hyun;Lim, Seok-Jong
    • Journal of Information Management
    • /
    • v.37 no.4
    • /
    • pp.93-104
    • /
    • 2006
  • With the advancement of internet and video compression technology, there has been an increasing demand for video, and producted a large quantity contents of UCC. Therefore, Semantic-sensitive retrieval and construction for digital video library is more in demand than ever. However, it is extremely difficult to categorize and label scenes in any video automatically for searching wanted scene. This study proposes a method to extract certain scenes and analyze the video content, and shows the experimental results after categorizing 5 sports news(soccer, baseball, golf, basketball, and volleyball).

Using Radon Transform for Image Retrieval (영상 검색을 위한 Radon 변형의 이용)

  • Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.65-71
    • /
    • 2009
  • The basic features in the indexing and retrieval of the image is used color, shape, and texture in traditional image retrieval method. We do not use these features and offers a new way. For content-based video indexing and retrieval, visual features used to measure the similarity of the geometric method is presented. This method is called the Radon transform. Without separation, this method is calculated based on the geometric distribution of image. In the experiment has a very good search results.

A Study on the Content-Based Video Information Indexing and Retrieval Using Closed Caption and Speech Recognition (캡션정보 및 음성인식을 이용한 내용기반 비디오 정보 색인 및 검색에 관한 연구)

  • 손종목;김진웅;배건성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.141-145
    • /
    • 1999
  • 뉴스나 드라마, 영화 등의 비디오에 대한 검색 시 일반 사용자의 요구에 가장 잘 부합되는 결과를 얻기 위해 비디오 데이터의 의미적 분석과 색인을 만드는 것이 필요하다. 일반적으로 음성신호가 비디오 데이터의 내용을 잘 나타내고 비디오와 동기가 이루어져 있으므로, 내용기반 검색을 위한 비디오 데이터 분할에 효율적으로 이용될 수 있다 본 논문에서는 캡션 정보가 주어지는 방송뉴스 프로그램을 대상으로 효율적인 검색, 색인을 위한 비디오 데이터의 분할에 음성인식기술을 적용하는 방법을 제안하고 그에 따른 실험결과를 제시한다.

  • PDF

A Semantic-based Video Retrieval System using Method of Automatic Annotation Update and Multi-Partition Color Histogram (자동 주석 갱신 및 멀티 분할 색상 히스토그램 기법을 이용한 의미기반 비디오 검색 시스템)

  • 이광형;전문석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1133-1141
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

A study on searching image by cluster indexing and sequential I/O (연속적 I/O와 클러스터 인덱싱 구조를 이용한 이미지 데이타 검색 연구)

  • Kim, Jin-Ok;Hwang, Dae-Joon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.779-788
    • /
    • 2002
  • There are many technically difficult issues in searching multimedia data such as image, video and audio because they are massive and more complex than simple text-based data. As a method of searching multimedia data, a similarity retrieval has been studied to retrieve automatically basic features of multimedia data and to make a search among data with retrieved features because exact match is not adaptable to a matrix of features of multimedia. In this paper, data clustering and its indexing are proposed as a speedy similarity-retrieval method of multimedia data. This approach clusters similar images on adjacent disk cylinders and then builds Indexes to access the clusters. To minimize the search cost, the hashing is adapted to index cluster. In addition, to reduce I/O time, the proposed searching takes just one I/O to look up the location of the cluster containing similar object and one sequential file I/O to read in this cluster. The proposed schema solves the problem of multi-dimension by using clustering and its indexing and has higher search efficiency than the content-based image retrieval that uses only clustering or indexing structure.

Face Detection for Cast Searching in Video (비디오 등장인물 검색을 위한 얼굴검출)

  • Paik Seung-ho;Kim Jun-hwan;Yoo Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.983-991
    • /
    • 2005
  • Human faces are commonly found in a video such as a drama and provide useful information for video content analysis. Therefore, face detection plays an important role in applications such as face recognition, and face image database management. In this paper, we propose a face detection algorithm based on pre-processing of scene change detection for indexing and cast searching in video. The proposed algorithm consists of three stages: scene change detection stage, face region detection stage, and eyes and mouth detection stage. Experimental results show that the proposed algorithm can detect faces successfully over a wide range of facial variations in scale, rotation, pose, and position, and the performance is improved by $24\%$with profile images comparing with conventional methods using color components.

Similar Sub-Trajectory Retrieval based on k-warping Algorithm for Moving Objects in Video Databases (비디오 데이타베이스에서 이동 객체를 위한 k-워핑 알고리즘 기반 유사 부분궤적 검색)

  • 심춘보;장재우
    • Journal of KIISE:Databases
    • /
    • v.30 no.1
    • /
    • pp.14-26
    • /
    • 2003
  • Moving objects' trajectories play an important role in indexing video data on their content and semantics for content-based video retrieval. In this paper, we propose new similar sub-trajectory retrieval schemes based on k-warping algorithm for efficient retrieval on moving objects' trajectories in video data. The proposed schemes are fixed-replication similar sub-trajectory retrieval(FRSR) and variable-replication similar sub-trajectory retrieval(VRSR). The former can replicate motions with a fixed number for all motions being composed of the trajectory. The latter can replicate motions with a variable number. Our schemes support multiple properties including direction, distance, and time interval as well as a single property of direction, which is mainly used for modeling moving objects' trajectories. Finally, we show from our experiment that our schemes outperform Li's scheme(no-warping) and Shan's scheme(infinite-warping) in terns of precision and recall measures.

A new approach for overlay text detection from complex video scene (새로운 비디오 자막 영역 검출 기법)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.544-553
    • /
    • 2008
  • With the development of video editing technology, there are growing uses of overlay text inserted into video contents to provide viewers with better visual understanding. Since the content of the scene or the editor's intention can be well represented by using inserted text, it is useful for video information retrieval and indexing. Most of the previous approaches are based on low-level features, such as edge, color, and texture information. However, existing methods experience difficulties in handling texts with various contrasts or inserted in a complex background. In this paper, we propose a novel framework to localize the overlay text in a video scene. Based on our observation that there exist transient colors between inserted text and its adjacent background a transition map is generated. Then candidate regions are extracted by using the transition map and overlay text is finally determined based on the density of state in each candidate. The proposed method is robust to color, size, position, style, and contrast of overlay text. It is also language free. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.

A Semantics-based Video Retrieval System using Annotation and Feature (주석 및 특징을 이용한 의미기반 비디오 검색 시스템)

  • 이종희
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency md requires many efforts of system administrator or annotator because of imperfect automatic processing. In this paper, we propose semantics-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method and optimized comparison area extracting that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantics-based retrieval.