Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
ETRI Journal
/
제44권2호
/
pp.327-338
/
2022
Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.
비디오 개체 분할은 비디오를 구성하는 영상 프레임 각각에 대해 관심 개체 분할을 수행해야 할 뿐만 아니라, 해당 비디오를 구성하는 프레임 시퀀스 전체에 걸쳐 개체들에 대한 정확한 트래킹을 요구하기 때문에 난이도가 높은 기술이다. 특히 드라마 비디오에서 인물 개체 분할은 다양한 장소와 시간대에서 상호 작용하는 복수의 주요 등장인물들에 대한 정확한 트래킹을 요구하는 특징을 가지고 있다. 또한, 드라마 비디오 인물 개체분할은 주연 인물들과 조연 혹은 보조 출연 인물들 간의 등장 빈도에 상당한 차이가 있어 일종의 클래스 불균형 문제도 있다. 본 논문에서는 미생 드라마 비디오들을 토대로 구축한 인물 개체 분할 데이터 집합인 MHIS를 소개하고, 등장인물 클래스 간의 심각한 데이터 불균형 문제를 효과적으로 해결하기 위한 새로운 비디오 데이터 보강 기법인 CDVA를 제안한다. 기존의 비디오 데이터 보강 기법들과는 달리, 새로운 CDVA 보강 기법은 비디오들의 시-공간적 맥락을 충분히 고려해서 목표 인물이 삽입되어야 할 배경 클립 내의 위치를 결정함으로써, 보다 더 현실적인 보강 비디오들을 생성한다. 따라서 본 논문에서 제안하는 새로운 비디오 데이터 보강 기법인 CDVA는 비디오 개체 분할을 위한 심층 신경망 모델의 성능을 효과적으로 향상시킬 수 있다. 본 논문에서는 MHIS 데이터 집합을 이용한 다양한 정량 및 정성 실험들을 통해, 제안 비디오 데이터 보강 기법의 유용성과 효과를 입증한다.
동영상 객체 분할(VOS) 기술은 연속된 레이블링 데이터를 필요로 하며, 현재 공개된 데이터셋으로 훈련된 VOS방법은 그 성능이 제한된다. 이 문제를 해결하기 위해 본 논문에서는 간단하면서도 효과적인 동영상 데이터 증강 기술들을 제안한다. 첫번째 증강 기술은 영상 내에서 객체를 제외한 배경을 다른 영상의 배경으로 대체하는 기법이고, 두번째 기술은 학습될 동영상 데이터의 순서를 무작위 확률로 뒤집어 역 재생되는 영상을 학습시키는 기법이다. 두 증강 기술은 객체 분할 시 배경 정보에 강인한 추정을 가능하게 하였고, 추가 데이터 없이 기존 모델의 성능을 향상시킬 수 있음을 보였다.
한국방송공학회 1998년도 Proceedings of International Workshop on Advanced Image Technology
/
pp.147-153
/
1998
This paper provides a method for video augmentation using image interpolation. In computer graphics or augmented reality, 3D information of a model object is necessary to generate 2D views of the model, which are then inserted into or overlayed on environmental views or real video frames. However, we do not require any three dimensional model but images of the model object at some locations to render views according to the motion of video camera which is calculated by an SFM algorithm using point matches under weak-perspective (scaled-orthographic) projection model. Thus, a linear view interpolation algorithm is applied rather than a 3D ray-tracing method to get a view of the model at different viewpoints from model views. In order to get novel views in a way that agrees with the camera motion the camera coordinate system is embedded into model coordinate system at initialization time on the basis of 3D information recovered from video images and model views, respectively. During the sequence, motion parameters from video frames are used to compute interpolation parameters, and rendered model views are overlayed on corresponding video frames. Experimental results for real video frames and model views are given. Finally, discussion on the limitations of the method and subjects for future research are provided.
본 논문에서는 비디오에서 비보정 3차원 좌표의 복원과 카메라의 움직임 추정을 통하여 가상 객체를 비디오에 자연스럽게 합성하는 방법을 제안한다. 비디오의 장면에 부합되도록 가상 객체를 삽입하기 위해서는 장면의 상대적인 구조를 얻어야 하고 비디오 프레임의 흐름에 따른 카메라 움직임의 변화도 추정해야 한다. 먼저 특장점을 추적하고 비보정 절차를 수행하여 카메라 파라메터와 3차원 구조를 복원한다. 각 프레임에서 카메라 파라메터들을 고정시켜 촬영하고 이들 카메라 파라메터는 일정 프레임 동안 불변으로 가정하였다. 제안된 방법으로 세 프레임 이상에서 작은 수의 특징점 만으로도 올바른 3차원 구조를 얻을 수 있었다. 가상객체의 삽입 위치는 초기 프레임에서 특정 면의 모서리점의 대응점을 지정하여 결정한다. 가상 객체의 투사 영역을 계산하고 이 영역에 이음새가 없도록 텍스처를 혼합하여 가상객체와 비디오의 부자연스러운 합성 문제를 해결하였다. 제안 방법은 비보정 절차를 선형으로만 구현하여 기존의 방법에 비해서 안정성과 수행속도의 면에서 우수하다. 실제 비디오 스트림에 대한 다양한 실험을 수행한 결과 여러 증강현실 응용 시스템에 유용하게 사용될 수 있음을 입증하였다.
데이터 증강은 데이터셋의 양이 충분하지 않을 때 소량의 데이터를 활용하여 데이터의 양을 늘리는 기법이다. 인터넷의 보급으로 인해 손쉽게 얻을 수 있는 데이터는 많아졌지만 의학과 같이 데이터의 수집이 곤란한 분야도 여전히 남아 있다. 블랙 스크린 감지 모델에서 사용하는 비디오 월 컨트롤러에서 블랙 스크린이 발생한 이미지도 수집하기 어려운 데이터인데, 이는 비디오 월 컨트롤러를 운용하고 있는 중에 블랙 스크린이 발생하는 빈도가 낮기 때문이다. 따라서 본 논문에서는 비디오 월 컨트롤러에서 수집한 소량의 블랙 스크린 이미지를 활용하여 DCGAN을 훈련한 후 DCGAN의 생성자로 대량의 데이터셋을 생성하는 모델을 제안한다.
증강현실에서 다양한 미디어의 결합으로 보다 향상된 현실감 있는 멀티미디어 데이터가 요구되고 있다. 기존의 미디어 정보에 텍스트 및 음성과 비디오 등 다양한 미디어를 결합한 멀티미디어 정보에 대한 첨단 기술이 미디어 산업 전반에 주도적인 위치를 점하고 있다. 특히 인터넷에서의 다양한 의사전달 수단 및 시각화에 대한 관심과 가상공간에서의 의사 표현을 위한 실시간 상호작용 시스템 구축 및 3차원 콘텐츠, 증강현실 기술에 대한 서비스 요구가 증가되고 있다. 이러한 서비스들은 기존 콘텐츠에서 입체감 형성을 위한 3차원 공간구조의 복원에 필요한 깊이 값 생성에 어려움이 있다. 그러므로 2차원 영상을 이용하여 효율적인 Depth-map 생성에 관한 연구가 필요하다. 본 논문에서는 2차원 영상을 이용하여 3차원 공간구조 복원에 필요한 Depth-map 생성기법의 단점을 보완하여, 기존 알고리즘에서 정의 되지 않은 영상 내 소실점 위치에 따른 갚아 방향의 정의를 통한 개선된 Depth-map 생성 기법을 제안하였다.
증강현실에서 움직이는 가상 모델을 증강물로 활용하려면 대개 별도의 모델링이나 애니메이션 도구 사용이 필요하며 이는 매우 전문적이고 복잡한 작업이다. 본 논문에서는 그러한 과정 없이 동적 가상 객체를 증강 환경에 삽입할 수 있는 방법으로 비디오 객체 기반 저작 방법을 제시한다. 그랩컷과 그로컷을 통합 적용하여 대상물의 초기 영역을 분리한 후, 스냅컷을 이용해 프레임간 경계선 변화를 자동 추적하여 동작이 담긴 연속 프레임을 실사 비디오에 증강하는 방식이다. 실험결과로, 몇 단계의 메뉴 선택과 경계선 오류 정정 스케치만으로 특정 비디오 객체 컷아웃 및 증강 객체 저작이 가능함을 보였다.
Recently, various AR-based product design methodologies have been introduced. In this paper, we propose technologies for enhancing robust augmentation and immersive realization of virtual objects. A robust augmentation technology is developed for various lighting conditions and a partial solution is proposed for the hand occlusion problem that occurs when the virtual objects overlay the user' hands. It provides more immersive or natural images to the users. Finally, vibratory haptic cues by page motors as well as button clicking force feedback by modulating pneumatic pressures are proposed while interacting with virtual widgets. Also our system reduces gabs between modeling spaces and user spaces. An immersive game-phone model is selected to demonstrate that the users can control the direction of the car in the racing game by tilting a tangible object with the proposed augmented haptic and robust non-occluded visual feedback. The proposed methodologies will be contributed to the immersive realization of the conventional AR system.
데이터 불균형은 분류 문제에서 흔히 마주치는 문제로, 데이터셋 내의 클래스간 샘플 수의 현저한 차이에서 기인한다. 이러한 데이터 불균형은 일반적으로 분류 모델에서 과적합, 과소적합, 성능 지표의 오해 등의 문제를 야기한다. 이를 해결하기 위한 방법으로는 Resampling, Augmentation, 규제 기법, 손실 함수 조정 등이 있다. 본 논문에서는 손실 함수 조정에 대해 다루며 특히, 불균형 문제를 가진 Multi-Class 블랙박스 동영상 데이터에서 여러 구성의 손실 함수(Cross Entropy, Balanced Cross Entropy, 두 가지 Focal Loss 설정: 𝛼 = 1 및 𝛼 = Balanced, Asymmetric Loss)의 성능을 I3D, R3D_18 모델을 활용하여 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.