• 제목/요약/키워드: Vickers hardness test

검색결과 232건 처리시간 0.021초

유동응력과 비커스경도의 이론적 관계 연구 (A Study on the Theoretical Relation between Flow Stress and Vickers Hardness)

  • 이충호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.69-72
    • /
    • 1997
  • The indentation process in the Vickers hardness test is a kind of controlled local plastic deformation. Vickers hardness is defined as indenting force per unit area indented by a pyramid-shaped diamond at the hardness test. That is a measure of mechanical resistance against indentation of a rigid body into the deformable material. Therefore it is well known that Vickers hardness has a direct relation with the flow stress of the strain-hardened tmaterial. This relation is theoretically investigated and the result is given for use in practice.

  • PDF

유동응력과 비커스경도의 관계 실험적 연구 (An Experimental Study on the Relation between Flow Stress and Vickers Hardness)

  • 이충호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.65-68
    • /
    • 1997
  • Vickers hardness is defined as indenting force per unit area indented by a pyramid-shaped diamond at the hardness test. It is well known that Vickers hardness has a direct relation with the flow stress of the strain-hardened material. This relation was theoretically investigated and the result was summerized in a form of algebraic equation in the last paper. In the present paper and experimental validation of this theoretical relation is given along with mathematical formulas for conversion of Vickers hardness into the flow stress in the strain-hardened material for practical use.

  • PDF

미소경도 측정에 의한 590DP강 Subsurface Zone 내 수소취성 평가 (Hydrogen Embrittlement Evaluation of Subsurface Zone in 590DP Steel by Micro-Vickers Hardness Measurement)

  • 최종운;박재우;강계명
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.581-586
    • /
    • 2011
  • This study describes a hydrogen embrittlement evaluation of the subsurface zone in 590DP steel by micro-Vickers hardness measurement. The 590DP steel was designed to use in high-strength thin steel sheets as automotive materials. The test specimens were fabricated to 5 series varying the chemical composition through the process of casting and rolling. Electrochemical hydrogen charging was conducted on each specimen with varying current densities and charging times. The relationship between the embrittlement and hydrogen charging conditions was established by investigating the metallography. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of the subsurface zone in addition to the microscopic investigation. The micro-Vickers hardness increased with the charging time at the surface. However, the changing ratio and maximum variation of hardness with depth were nearly the same value for each test specimen under the current density of 150 mA/$cm^2$ and charging time of 50 hours. Consequently, it appears that hydrogen embrittlement in 590DP steel can be evaluated by micro-Vickers hardness measurement.

몬테카를로 시뮬레이션에 의한 미소 비커스 경도의 Weibull 통계 해석 (Weibull Statistical Analysis of Micro-Vickers Hardness using Monte-Carlo Simulation)

  • 김선진;공유식;이상열
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.346-352
    • /
    • 2009
  • In the present study, the Weibull statistical analysis using the Monte-Carlo simulation has been performed to investigate the micro-Vickers hardness measurement reliability considering the variability. Experimental indentation test were performed with a micro-Vickers hardness tester for as-received and quenching and tempering specimens in SCM440 steels. The distribution of micro-Vickers hardness is found to be 2-parameter Weibull distribution function. The mean values and coefficients of variation (COV) for both data set are compared with results based on Weibull statistical analysis. Finally, Monte-Carlo simulation was performed in order to evaluate the effect of sample size on the micro-Vickers hardness measurement reliability. For the parent distribution with shape parameter 30.0 and scale parameter 200.0 (COV=0.040), the number of sample data required to obtain the true Weibull parameters was founded by 20. For the parent distribution with shape parameter 10.0 and scale parameter 200.0 (COV=0.1240), the number of sample data required to obtain the true Weibull parameters was founded by 30.

사출금형기계용 앵귤러핀의 충격시험에 따른 파손분석과 와이블 통계 해석 (Failure Analysis and Weibull Statistical Analysis according to Impact Test of the Angular Pin for Injection Molding Machines)

  • 김철수;남기우;안석환
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, failure analysis of the angular pin for molding machines to aluminum component molding was carried out. SM45C steel was used for the angular pin, it was surface hardened by the induction surface hardening heat treatment. The cross section of damaged angular pin was observed, and micro Vickers hardness value from the fractured part was measured. Brittle fracture was occurred from the fracture surface of angular pin, therefore, impact toughness value was evaluated by V-notch Charpy impact test. It was confirmed that the impact absorption energy was high when was tempered at a high temperature for a long time, and the toughness was slightly increased. Also, 2-parameter Weibull statistical analysis was investigated in order to evaluate the reliability of the measured micro Vickers hardness values and absorbed energy. The micro Vickers hardness and absorbed energy well followed a two-parameter Weibull probability distribution, respectively. The reverse design against angular pin was proposed as possible by using test results.

수소주입시킨 다상조직강의 Subsurface Zone 내 취성화 거동 (A Behavior of Embrittlement at the Subsurface Zones of Multiphase Steels Charged with Hydrogen)

  • 강계명;박재우;최종운
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.48-53
    • /
    • 2013
  • In the present work, it was investigated a behavior of hydrogen embrittlement at the subsurface zones of 590 DP steels by using the micro-Vickers hardness test. The micro-Vickers hardnessess of DP steels were measured to evaluate the degree of embrittlement as the effective hardening depths of subsurface zones with hydrogen charging conditions. The results showed that the distributions of micro-Vickers hardness in width varied from maximum hardness 239.5 Hv to minimum hardness 174 Hv, while the depth of effective hardening layer at the subsurface zones of DP steels was from $320{\mu}m$ to $460{\mu}m$ with hydrogen charging conditions, respectively. It was proposed that the distribution of microhardness be used as the evaluation index of the degree of embrittlement. But the variations of martensite volume fractions were not affected along depth of hardening at the same changing time, hydrogen charging times were appeared as an effective factor of the degree of embrittlement. Therefore, the micro-Vickers hardness test is an attractive tool for evaluation of hydrogen embrittlement at the subsurface zones of these DP steels.

Slitting Knife의 손상에 미치는 마모의 영향 (The effect of wear on the damage of slitting knife)

  • 남기우;김철수;안석환
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.5-11
    • /
    • 2016
  • This study analyzed the damage to a slitting knife after cutting steel sheets. Damages to the structure were observed and wear tests were conducted. In addition, the degradation on the damaged and undamaged parts was compared with a micro Vickers hardness test. Weibull statistical analysis was carried out in order to evaluate the reliability of the micro Vickers hardness measured data. Spalling of the edge portion occurred by degradation during use over a long period. Rough parts in the specimens were caused by damage because the slitting knife was used for 1 year. The friction coefficient and wear loss at the damaged parts of the knife edge were slightly larger from shock due to repetitive cutting operation. The micro Vickers hardness followed a two-parameter Weibull probability distribution.

고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가 (The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel)

  • 이철치;박재우;강계명
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

SKD11 절단금형치구용 소재의 마모손상에 관한 연구 (A study on wear damage of SKD11 steel material for a cutting mold jig)

  • 남기우;김철수;안석환
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.5-13
    • /
    • 2016
  • This study is on wear damage of the material for a molding machine that be used at finally cutting of metal beam made in roll forming process of vehicle bump beam process line. SKD11 steel was used with the material for cutting mold jig. In the cutting mold jig, Ti diffusion heat treatment after vacuum heat treatment was carried out for upgrade of surface hardness and anti-wear. Also, the heat treatments by various methods were performed to compare the wear damage degree against above the existing heat treatment. Wear loss and friction coefficient were obtained from wear test. And, micro Vickers hardness values were compared with damaged parts or not of cutting mold jig. Micro Vickers hardness value appeared higher at the undamaged part by Ti diffusion heat treatment. The micro Vickers hardness well followed a two-parameter Weibull probability distribution.

보자력을 이용한 1Cr-1Mo-0.25V강 인공시효재의 열화도 평가 (Degradation Evaluation of Aged 1Cr-1Mo-0.25V Steel Using Coercive Force)

  • 유권상;남승훈;김용일;유광민;손대락
    • 비파괴검사학회지
    • /
    • 제19권4호
    • /
    • pp.288-293
    • /
    • 1999
  • 고온에서 사용중인 터빈 로터의 안전성을 평가하기 위해서는 열화된 재료의 물성이 필요하다. 실제로 발전소에서 사용되고 있는 열화도가 다른 로터강을 종류별로 입수하기가 어렵기 때문에, 터빈 로터재로 널리 사용되고 있는 1Cr-1Mo-0.25V 강으로 인공열화 시료를 제작하였다. 실제로 사용된 재료의 미세조직과 유사한 미세조직을 갖는 시료를 얻기 위하여 실제 사용온도보다 높은 $630^{\circ}C$의 등온에서 열처리시간을 다르게 하여 열화도가 다른 7종류의 시료를 얻었다. 열화도를 비파괴적으로 평가하기 위하여 상온에서 측정한 보자력을 이용하였다. 열화도의 증가에 따라 경도와 보자력은 감소하였는데, 이 원인을 미세조직 및 EPMA 분석에 의해 구명하였고, 경도와 보자력과의 상관관계를 만들어 비파괴적으로 열화도를 평가할 수 있는 기초를 마련하였다.

  • PDF