• 제목/요약/키워드: Vickers' hardness

검색결과 677건 처리시간 0.026초

가역 투자율 측정에 의한 1Cr-1Mo-0.25V 강의 열화도 평가 (Degradation Evaluation of 1Cr-lMo-0.25V Steel by Measuring Reversible Magnetic Permeability)

  • 유권상;김용일;남승훈;유광민;조육;손대락
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.445-450
    • /
    • 2000
  • 고온에서 운용 중인 설비의 안전성을 평가하기 위해서는 사용기간동안 열화된 재료의 물성을 측정하여야 한다. 실제 사용되고 있는 화력발전소 터빈의 로터에서 열화도가 다른 여러 종류의 시편을 입수하기 어렵기 때문에, 터빈 로터재로 널리 사용되고 있는 1Cr-1Mo-0.25V 강을 인공열화시켜 시편으로 사용하였다 열화도의 비파괴적 평가를 위하여 교류 섭동 자기장을 인가하여 가역 투자율을 측정하는 자기적 방법을 사용하였다. 열화도의 증가에 따라 경도와 가역 투자율 피크 사이의 간격은 감소하였는데, 경도와 가역 투자율 피크 간격과의 선형관계를 이용하여 비파괴적으로 터빈 로터강의 열화도를 평가할 수 있는 기초를 마련하였다.

  • PDF

광중합 시간과 거리의 변화에 따른 TheraCal LC의 중합도 평가 (Evaluation of the Changes in Polymerization of TheraCal LC with Various Light-curing Time and Distance)

  • 배상용;이제우;라지영
    • 대한소아치과학회지
    • /
    • 제46권4호
    • /
    • pp.392-399
    • /
    • 2019
  • 이 연구의 목적은 tricalcium silicate cement 중 하나인 TheraCal LC의 광중합 시간과 거리에 따른 중합도를 평가하는 것이었다. 금속주형을 이용해 시편을 제작하여 Vickers hardness number (VHN)를 측정하였으며, 중합시간과 조사시간에 따른 시편의 미세경도 값을 비교 분석하였다. 그 결과, 모든 군에서 상면의 VHN이 하면의 VHN보다 유의성 있게 컸다(p < 0.05). 하면의 VHN은 모든 중합거리에서 중합시간이 증가함에 따라 유의하게 증가하였고(p < 0.05), 중합시간이 일정하고 중합거리가 4.0 mm 이상이 되었을 때 유의하게 감소하였다(p < 0.05). 또한 시편을 20초간 중합한 경우 하면의 VHN은 2를 넘지 못했으며 이는 상면의 10%에 해당하였다. 이 연구 결과에 의하면, 모든 중합거리에서 TheraCal LC 시편의 하면까지 중합하기에 20초의 광중합 시간은 충분하지 않았으며, 중합도를 높이기 위해서 중합시간의 증가와 도포 두께의 감소를 고려해볼 필요가 있다.

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys

  • Shi, Ke;Huang, Bo;He, Bo;Xiao, Ye;Yang, Xiaoliang;Lian, Youyun;Liu, Xiang;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.190-197
    • /
    • 2019
  • W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.

50μm급 이트리아 안정화 지르코니아 비드의 미세구조 및 마모 조건에 따른 마모율 분석 (Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions)

  • 김정환;윤세중;한병동;안철우;윤운하;최종진
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.233-240
    • /
    • 2019
  • This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).

Evaluation of Mechanical Properties of Three-dimensional Printed Flexible Denture Resin according to Post-polymerization Conditions: A Pilot Study

  • Lee, Sang-Yub;Lim, Jung-Hwa;Shim, June-Sung;Kim, Jong-Eun
    • Journal of Korean Dental Science
    • /
    • 제15권1호
    • /
    • pp.9-18
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate whether three-dimensional (3D)-printed flexible denture resin has suitable mechanical properties for use as a thermoplastic denture base resin material. Materials and Methods: A total of 96 specimens were prepared using the 3D printed flexible denture resin (Flexible Denture). Specimens were designed in CAD software (Tinkercad) and printed through a digital light-processing 3D printer (Asiga MAX UV). Post-polymerization process was conducted according to air exposure or glycerin immersion at 35℃ or 60℃ and for 30 or 60 minutes. The maximum flexural strength, elastic modulus, 0.2% offset yield strength, and Vickers hardness of 3D-printed flexible denture resin were assessed. Result: The maximum flexural strength ranged from 64.46±2.03 to 84.25±4.32 MPa, the 0.2% offset yield strength ranged from 35.28±1.05 to 46.13±2.33 MPa, the elastic modulus ranged from 1,764.70±64.66 to 2,179.16±140.01 MPa, and the Vickers hardness ranged from 7.01±0.40 to 11.45±0.69 kg/mm2. Conclusion: Within the limits of the present study, the maximum flexural strength, 0.2% offset yield strength, elastic modulus, and Vickers hardness are sufficient for clinical use under the post-polymerization conditions of 60℃ at 60 minutes with or without glycerin precipitation.

Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging

  • Abdulrahman A. Balhaddad;Isadora M. Garcia;Haifa Maktabi;Maria Salem Ibrahim;Qoot Alkhubaizi;Howard Strassler;Fabricio M. Collares;Mary Anne S. Melo
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.51.1-51.13
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). Conclusions: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

Mechanical Behaviour of Non-Oxide Boride Type Ceramics Formed on The AISI 1040 Plain Carbon Steel

  • Sen, Saduman;Usta, Metin;Bindal, Cuma;UciSik, A.Hikmet
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.27-31
    • /
    • 2000
  • A series experiments were performed to evaluate mechanical behavior of non-oxide boride type ceramics formed on the AISI 1040 plain carbon steel. Boronizing was performed in a slurry salt bath consisting of borax, boric acid, and ferro-silicon at $950^{\circ}C$ for 2-6h. The AISI 1040 steel used as substrate material was containing 0.4%C, 0.13%Si, 0.65%Mn, 0.02%P, 0.014%S. The presence of non-oxide boride type ceramics $Fe_2B $ and FeB formed on the surface of steel was confirmed by metallographic technique and X-ray diffraction (XRD) analysis. The hardness of borides measured via Vickers indenter with a load of 2N reached a microhardness of up to 1800 DPN. The hardness of unborided steel was 185 DPN. The fracture toughness of borides measured by means of Vickers indenter with a load of 10N was about 2.30 MPa.$m^{1/2}$. The thickness of boride layers ranged from 72$\mu\textrm{m}$ to 145$\mu\textrm{m}$. Boride layers have a columnar morphology.

  • PDF

인장시험을 통한 Sn-xAg-0.5Cu 무연 솔더의 기계적 물성평가 (Estimation of Mechanical Properties of Sn-xAg-0.5Cu Lead-free Solder by Tensile Test)

  • 정종설;신기훈;김종형
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.41-45
    • /
    • 2011
  • SnAgCu lead-free solder alloy is considered as the best alternative to eutectic tin-lead solder. However, the detailed material properties of SnAgCu solder are not available in public. Hence, this paper presents an estimation of mechanical properties of SnAgCu lead-free solder. In particular, the weight percent of Ag was varied as 1.0wt%, 2.5wt%, 3.0wt%, and 4.5wt% in order to estimate the effect of Ag in the Sn-xAg-0.5Cu ternary alloy system. For this purpose, four types of SnAgCu bars were first molded by casting and then standard specimens were cut out of molded bars. Micro-Vickers hardness, tensile tests were finally performed to estimate the variations in mechanical properties according to the weight percent of Ag. Test results reveal that the higher the weight percent of Ag is, the higher the hardness, yield strength, and ultimate tensile strength become. More material properties will be further investigated in the future work.

Ti-Pd계 합금의 미세조직변화에 따른 부식거동 (Corrosion Behavior of Ti-Pd System Alloys by Microstructural changes)

  • 차성수;곽동주;남상용
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.9-16
    • /
    • 2008
  • The surface microstructural changes, mechanical properties and corrosion resistance of Ti-Pd alloys for dental biomaterials have been investigated. Ti, Ti-Pd alloys were melted in arc furnace and the corrosion resistance of Ti-Pd alloys was evaluated by anodic polarization test. The surface microstructural changes and mechanical properties of Ti-Pd alloys were analysed by scanning electron microscope and Vickers micro-hardness tester. The vickers hardnees of pure Ti improved by addition of Pd but Ti-25Pd alloy showed decreasing compared with Ti-15Pd. And anodic polarization and potentiostatic test were conducted in 5% HCl to quantify the resistance to corrosion with the addition of Pd, There was no significant difference in corrosion resistance between pure Ti, Ti-5Pd and Ti-15Pd alloy. However, Ti-25Pd alloy showed decreasing compared with pure Ti in corrosion resistance. From these results, it was concluded that newly formulated Ti-15Pd experimental alloy have adequate hardness and high corrosion resistance, and this alloy is promising candidate for a successful dental casting alloy.

  • PDF

MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression)

  • 황승준
    • 열처리공학회지
    • /
    • 제26권6호
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.