• Title/Summary/Keyword: Vickers' hardness

Search Result 677, Processing Time 0.022 seconds

Effect of pH Variation on the Sintering of Hydroxyapatite Powders Prepared by the Wet Method and their Mechanical Properties (습식법으로 제조한 수산화아파타이트 분말의 소결과 그 기계적 성질에 미치는 pHqus화의 영향)

  • 정형진;김병호;신용규
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.305-314
    • /
    • 1989
  • Effect of pH variation in starting solution for the making of hydroxyapatite powder was studied in relation to the sinterability of the powder and their mechanical properties of the sintered hydroxyapatite ceramics. The sinterability of hydroxyapatite powder prepared at different pH was found to be improved with increase in pH value of the starting solutions. Thus the powders prepared from the higher pH solutions including 10.5, 11.0 and 11.5 could be well densified almost upto theoretical density by firing for 1 hr at 1,00$0^{\circ}C$. But the powder based on pH 10 exhibited less sinterability even being fired at much higher temperature of 1,10$0^{\circ}C$, it gave only 90-95% of theoretical density. On the other hand the powder prepared on the lowest pH value 9.5 could not be well densified and it could obtain only 78% of theoretical density even by firing at 1,30$0^{\circ}C$ for 1hr. It was found that prismatic crystals of whitlockite were always included in the sintered bodies based on the lower pH values as a minority crystalline phase together with the major crystalline phase of hydroxyapatite and its inclusion might impair the sinterability of powder. However in the case of the higher pH, the powder contained only hydroxyapatite as a crystalline phase on sintering without any minorities. The sphere shape of crystals might help effectively the densification of the bodies. The best mechanical properties could be obtained from the body of pH 11 sintered at 1,10$0^{\circ}C$, which gave 99.5% of theoretical density, 662Kg/$\textrm{mm}^2$ of vickers hardness and 1,352Kg/$\textrm{cm}^2$ of diameteral compression strength.

  • PDF

Influence of modeling agents on the surface properties of an esthetic nano-hybrid composite

  • Kutuk, Zeynep Bilge;Erden, Ecem;Aksahin, Damla Lara;Durak, Zeynep Elif;Dulda, Alp Can
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.13.1-13.10
    • /
    • 2020
  • Objective: The aim of this study was to evaluate the influence of different modeling agents on the surface microhardness (Vickers hardness number; VHN), roughness (Ra), and color change (ΔE) of a nano-hybrid composite with or without exposure to discoloration by coffee. Materials and Methods: Sixty-four cylinder-shaped nano-hybrid composite specimens were prepared using a Teflon mold. The specimens' surfaces were prepared according to the following groups: group 1, no modeling agent; group 2, Modeling Liquid; group 3, a universal adhesive (G-Premio Bond); and group 4, the first step of a 2-step self-adhesive system (OptiBond XTR). Specimens were randomly allocated into 2 groups (n = 8) according to the storage medium (distilled water or coffee). VHN, Ra, and ΔE were measured at 24 hours, 1 week, and 6 weeks. The Kruskal-Wallis test followed by the Bonferroni correction for pairwise comparisons was used for statistical analysis (α = 0.05). Results: Storage time did not influence the VHN of the nano-hybrid composite in any group (p > 0.05). OptiBond XTR Primer application affected the VHN negatively in all investigated storage medium and time conditions (p < 0.05). Modeling Liquid application yielded improved Ra values for the specimens stored in coffee at each time point (p < 0.05). Modeling Liquid application was associated with the lowest ΔE values in all investigated storage medium and time conditions (p < 0.05). Conclusion: Different types of modeling agents could affect the surface properties and discoloration of nano-hybrid composites.

Evaluation of Aging Degradation in 2.25Cr-1Mo Steel by Coercivity and Remanence Measurements - Microstructural Approach (보자력 및 잔류자화를 이용한 2.25Cr-1Mo강의 경년열화도 평가 - 미세조직적 접근)

  • Byeon, Jai-Won;Kwun, Sook-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Microstructural analysis (mean equivalent size, number of carbides per unit area) and measurement of mechanical properties(UTS, Vickers hardness) and magnetic properties(coercivity, remanence) were performed. By comparing these results, the relationship between magnetic properties and microstructural changes with artificial aging was clarified. The carbides were classified as rod, globular and acicular type in terms of morphology. The fine acicular carbides were found to diminish drastically in the initial stage of aging. The magnetic coercivity and remanence were observed to decrease rapidly in the initial about 920 hours of aging time and then decrease slowly afterwards. Linear correlations between the mechanical properties and magnetic properties such as correlations remanence were found.

The effect of resin thickness on polymerization characteristics of silorane-based composite resin

  • Son, Sung-Ae;Roh, Hyoung-Mee;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.310-318
    • /
    • 2014
  • Objectives: This study examined the influence of the resin thickness on the polymerization of silorane- and methacrylate-based composites. Materials and Methods: One silorane-based (Filtek P90, 3M ESPE) and two methacrylate-based (Filtek Z250 and Z350, 3M ESPE) composite resins were used. The number of photons were detected using a photodiode detector at the different thicknesses (thickness, 1, 2 and 3 mm) specimens. The microhardness of the top and bottom surfaces was measured (n = 15) using a Vickers hardness with 200 gf load and 15 sec dwell time conditions. The degree of conversion (DC) of the specimens was determined using Fourier transform infrared spectroscopy (FTIR). Scratched powder of each top and bottom surface of the specimen dissolved in ethanol for transmission FTIR spectroscopy. The refractive index was measured using a Abbe-type refractometer. To measure the polymerization shrinkage, a linometer was used. The results were analyzed using two-way ANOVA and Tukey's test at p < 0.05 level. Results: The silorane-based resin composite showed the lowest filler content and light attenuation among the specimens. P90 showed the highest values in the DC and the lowest microhardness at all depth. In the polymerization shrinkage, P90 showed a significantly lower shrinkage than the rest two resin products (p < 0.05). P90 showed a significantly lower refractive index than the remaining two resin products (p < 0.05). Conclusions: DC, microhardness, polymerization rate and refractive index linearly decreased as specimen thickness linearly increased. P90 showed much less polymerization shrinkage compared to other specimens. P90, even though achieved the highest DC, showed the lowest microhardness and refractive index.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

A Study on the Gating System and Simulation for Gravity Casting of ZnDC1 Worm Gear (아연 합금 웜기어의 중력 주조 공정을 위한 주조 방안 설계 및 해석에 관한 연구)

  • Lee, Un-Gil;Kim, Jae-Hyun;Jin, Chul-Kyu;Chun, Hyeon-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.589-596
    • /
    • 2021
  • In this study, the optimum gating system was designed, and the two zinc alloy worm gears were manufactured in single process by applying a symmetrical gating system with 2 runners. The SRG ratio is set to 1 : 0.9 : 0.6, and the cross-sectional shapes such as sprue, runner and gate are designed. In order to determine whether the design of the gating system is appropriate, casting analysis was carried out. It takes 4.380 s to charge the casting 100%, 0.55 to 0.6 m/s at the gates and solidification begins after the casting is fully charged. The amount of air entrapment is 2% in the left gear and 6% in the right gear. Hot spots occurred in the center hole of the gear, and pores were found to occur around the upper part of the hole. Therefore, the design of the casting method is suitable for worm gears. CT analysis showed that all parts of worm gear were distributed with fine pores and some coarse pores were distributed around the central hole of worm gear. The yield strength and tensile strength were 220 MPa, 285 MPa, and the elongation rate was 8%. Vickers hardness is 82 HV.

Fabrication and Mechanical Properties of WC-Mo2C-Co Hard Materials by the Pulsed Current Activated Sintering Method (펄스 전류 활성 소결법을 이용한 WC-Mo2C-Co 소결체 제조 및 기계적 특성 평가)

  • Youn, Hee-Jun;Bang, Han-Sur;Bang, Hee-Seon;Oh, Ik-Hyun;Park, Hyun-Kuk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.921-929
    • /
    • 2012
  • The pulsed current activated sintering method (PCAS) is a new rapid sintering method that was developed recently for fabricating ceramics and composites. This method combines a high temperature for a short time with pressure application. In this work, PCAS was used to fabricate $WC-5wt%Mo_2C-5wt%$ Co hard material using WC, $Mo_2C$, and Co. The $WC-Mo_2C-Co$ was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and electric current for 11 min without grain growth. The average grain size of WC that was produced through PCAS was about $0.5-0.6{\mu}m$. The vickers hardness and fracture toughness of the $WC-5wt%Mo_2C-5wt%$Co hard materials were about $2453.5kg/mm^2$ and $7.9MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $11200^{\circ}C$.

Segregation Phenomenon of As-Cast and Heat Treatment Microstructures in Investment Casting of IN738LC Superalloy (IN738LC 초내열합금 정밀 주조의 주조 및 열처리 미세조직에 구성되는 성분 편석 현상)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.409-419
    • /
    • 2021
  • The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ' and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ' and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ', and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ' with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ' forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.

Influence of heat treatment on the microstructure and the physical and mechanical properties of dental highly translucent zirconia

  • Dimitriadis, Konstantinos;Sfikas, Athanasios Konstantinou;Kamnis, Spyros;Tsolka, Pepie;Agathopoulos, Simeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.96-107
    • /
    • 2022
  • PURPOSE. Microstructural and physico-mechanical characterization of highly translucent zirconia, prepared by milling technology (CAD-CAM) and repeated firing cycles, was the main aim of this in vitro study. MATERIALS AND METHODS. Two groups of samples of two commercial highly-translucent yttria-stabilized dental zirconia, VITA YZ-HTWhite (Group A) and Zolid HT + White (Group B), with dimensions according to the ISO 6872 "Dentistry - Ceramic materials", were prepared. The specimens of each group were divided into two subgroups. The specimens of the first subgroups (Group A1 and Group B1) were merely the sintered specimens. The specimens of the second subgroups (Group A2 and Group B2) were subjected to 4 heat treatment cycles. The microstructural features (microstructure, density, grain size, crystalline phases, and crystallite size) and four mechanical properties (flexural strength, modulus of elasticity, Vickers hardness, and fracture toughness) of the subgroups (i.e. before and after heat treatment) were compared. The statistical significance between the subgroups (A1/A2, and B1/B2) was evaluated by the t-test. In all tests, P values smaller than 5% were considered statistically significant. RESULTS. A homogenous microstructure, with no residual porosity and grains sized between 500 and 450 nm for group A and B, respectively, was observed. Crystalline yttria-stabilized tetragonal zirconia was exclusively registered in the X-ray diffractograms. The mechanical properties decreased after the heat treatment procedure, but the differences were not statistically significant. CONCLUSION. The produced zirconia ceramic materials can be safely (i.e., according to the ISO 6872) used in extensive fixed prosthetic restorations, such as substructure ceramics for three-unit prostheses involving the molar restoration and substructure ceramics for prostheses involving four or more units. Consequently, milling technology is an effective manufacturing technology for producing zirconia substructures for dental fixed all-ceramic prosthetic restorations.

Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.