• Title/Summary/Keyword: Vibrational motion

Search Result 133, Processing Time 0.019 seconds

Effects of van der Waals Bonding on the Collisional Dissociation of a Highly Excited Chemical Bond

  • Yoo Hang Kim;Hyung Kyu Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.397-403
    • /
    • 1991
  • Dissociation of a highly excited diatomic molecule in the Ar + Ar…$O_2$ and Ar + $O_2$ collisions is studied using trajectory dynamics procedures in the collision energy range of 0.050 to 1.0 eV. Between 0.050 and 0.2 eV, dissociation probabilities are very large for the complexed system compared to the uncomplexed system. This efficient dissociation of $O_2$ in Ar…$O_2$ is attributed to the ready flow of energy from the incident atom to the large-amplitude vibrational motion of the excited O2 via the van der Waals bond. Thermal-averaged dissociation probabilites of $O_2$ in Ar + Ar…$O_2$ near room temperature are nearly two orders of magnitude larger than those of $O_2$ in Ar + $O_2$.

The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates

  • Fattahi, A.M.;Safaei, Babak;Moaddab, Elham
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.281-292
    • /
    • 2019
  • Nonlocal elasticity and Reddy plant theory are used to study the vibration response of functionally graded (FG) nanoplates resting on two parameters elastic medium called Pasternak foundation. Nonlocal higher order theory accounts for the effects of both scale and the effect of transverse shear deformation, which becomes significant where stocky and short nanoplates are concerned. It is assumed that the properties of FG nanoplate follow a power law through the thickness. In addition, Poisson's ratio is assumed to be constant in this model. Both Winkler-type and Pasternak-type foundation models are employed to simulate the interaction of nanoplate with surrounding elastic medium. Using Hamilton's principle, size-dependent governing differential equations of motion and corresponding boundary conditions are derived. A differential quadrature approach is being utilized to discretize the model and obtain numerical solutions for various boundary conditions. The model is validated by comparing the results with other published results.

Influence of the distribution pattern of porosity on the free vibration of functionally graded plates

  • Hadji, Lazreg;Fallah, Ali;Aghdam, Mohammad Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.151-161
    • /
    • 2022
  • In this study, the effect of porosity distribution pattern on the free vibration analysis of porous FG plates with various boundary conditions is studied. The material properties of the plate and the porosities within the plate are considered to vary continuously through the thickness direction according to the volume fraction of constituents defined by the modified rule of the mixture, this includes porosity volume fraction with four different types of porosity distribution over the cross-section. The governing partial differential equation of motion for the free vibration analysis is obtained using hyperbolic shear deformation theory. An analytical solution is presented for the governing PDEs for various boundary conditions. Results of the presented solution are compared and validated by the available results in the literature. Moreover, the effects of material and porosity distribution and geometrical parameters on vibrational properties are investigated.

Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes

  • Wu, Xiongwei;Fang, Ting
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.617-627
    • /
    • 2022
  • In the current study, the nonlinear impact of the Von-Kármán theory on the vibrational response of nonhomogeneous structures of functionally graded (FG) nano-scale tubes is investigated according to the nonlocal theory of strain gradient theory as well as high-order Reddy beam theory. The inhomogeneous distributions of temperature-dependent material consist of ceramic and metal phases in the radial direction of the tube structure, in which the thermal stresses are applied due to the temperature change in the thickness of the pipe structure. The general motion equations are derived based on the Hamilton principle, and eventually, the acquired equations are solved and modeled by the Meshless approach as well as a computer simulation via intelligent mathematical methodology. The attained results are helpful to dissect the stability of the MEMS and NEMS.

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.701-711
    • /
    • 2022
  • The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.

The Research of the Hybrid Power Generation using Ocean Wave (파력을 이용한 하이브리드 발전에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.861-866
    • /
    • 2011
  • This paper described the hybrid power generation using ocean wave that consists of linear power generation system and vibrational power generation system. The linear power generation system is made up of the winding coil, the permanent magnet and it is performed stable generation regardless of the wave frequency using directly the ocean wave velocity. And the vibration power generation system consists of the winding coil, the permanent magnet and spring. When the vibration system natural frequency in the vibrational power generation system is tuned to the ocean wave frequency, the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion, then we can obtain more the electric power. Therefore, in this paper, the proposed hybrid power generation using ocean wave have merits that obtaining the more electric energy in resonance frequency and carrying out stable generation even over the range of resonance frequency.

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.