• Title/Summary/Keyword: Vibrational Frequency

Search Result 351, Processing Time 0.026 seconds

Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions

  • Karami, Behrouz;Shahsavari, Davood;Ordookhani, Ali;Gheisari, Parastoo;Li, Li;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.689-702
    • /
    • 2020
  • The current study deals with the size-dependent free vibration analysis of graphene nanoplatelets (GNPs) reinforced polymer nanocomposite plates resting on Pasternak elastic foundation containing different boundary conditions. Based on a four variable refined shear deformation plate theory, which considers shear deformation effect, in conjunction with the Eringen nonlocal elasticity theory, which contains size-dependency inside nanostructures, the equations of motion are established through Hamilton's principle. Moreover, the effective material properties are estimated via the Halpin-Tsai model as well as the rule of mixture. Galerkin's mathematical formulation is utilized to solve the equations of motion for the vibrational problem with different boundary conditions. Parametrical examples demonstrate the influences of nonlocal parameter, total number of layers, weight fraction and geometry of GNPs, elastic foundation parameter, and boundary conditions on the frequency characteristic of the GNPs reinforced nanoplates in detail.

Damage detection through structural intensity and vibration based techniques

  • Petrone, G.;Carzana, A.;Ricci, F.;De Rosa, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.613-637
    • /
    • 2017
  • The development systems for the Structural Health Monitoring has attracted considerable interest from several engineering fields during the last decades and more specifically in the aerospace one. In fact, the introduction of those systems could allow the transition of the maintenance strategy from a scheduled basis to a condition-based approach providing cost benefits for the companies. The research presented in this paper consists of a definition and next comparison of four methods applied to numerical measurements for the extraction of damage features. The first method is based on the determination of the Structural Intensity field at the on-resonance condition in order to acquire information about the dissipation of vibrational energy throughout the structure. The Damage Quantification Indicator and the Average Integrated Global Amplitude Criterion methods need the evaluation of the Frequency Response Function for a healthy plate and a damaged one. The main difference between these two parameters is their mathematical definition and therefore the accuracy of the scalar values provided as output. The fourth and last method is based on the Mode-shape Curvature, a FRF-based technique which requires the application of particular finite-difference schemes for the derivation of the curvature of the plate. All the methods have been assessed for several damage conditions (the shape, the extension and the intensity of the damage) on two test plates: an isotropic (steel) plate and a 4-plies composite plate.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

Fluorescence Excitation Spectroscopy of Octatetraene-Xe van der Waals Clusters

  • Kim, Taek-Soo;Choi, Kyo-Won;Kim, Sang-Kyu;Choi, Young-S.;Park, Sung-Woo;Ahn, Doo-Sik;Lee, Sung-Yul;Yoshihara, Keitaro
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.195-200
    • /
    • 2002
  • Fluorescence excitation spectrum of the trans.trans-1,3,5,7-octatetraene(OT)-Xe van der Waals clusters formed in supersonic jet expansions has been obtained. The transition lines corresponding to the van der Waals cluters of OT with Xe are observed in the lower frequency side of the OT band origin. Based on the spectral shifts, fluorescence lifetimes, and concentration dependence of the peak intensities, most of the transition lines are assigned to the $OT-Xe_n$ (n = 1, 2, 3, 4) clusters. Long progressions of a van der Waals vibrational mode are observed for n = 1, 2, 3 and 4 clusters and assigned to rocking of the OT moiety with respect to the Xe atom with the help of ab initio quantum mechanical calculation.

Vibration transfer characteristic of foaming sponge chair seat (발포스펀지 의자시트의 진동전달 특성)

  • Kim, S.H.;Kang, H.J.;Kim, T.K.;Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • Recently, in the movie theater, the special chair is installed to maximize the viewing effect of movies. It is structured to convey a vibrational stimulus to a specially-designated parts of human body by attaching a vibration transducer to a existing theater chair. This paper describes the analysis of the vibration transfer characteristic of a foaming sponge seat for the design of the special chair. We could not apply the structural analysis S/W because it is difficult to obtain the mechanical properties and damping coefficients of the various type sponges. And then we computed the transfer functions by the global curve fitting program based on experimental modal analysis. The experimental response results comparatively coincide with those by the global curve fitting program. We also could obtain the natural frequencies, the modal damping coefficient ratio, the modal vectors and the whole transfer functions. Therefore we could analyze the dynamic characteristic for design of foaming sponge seat.

A Method Using Linear Matrix Algebra for Determination of Engine Motion in Automobile (자동차 엔진의 운동변위 결정을 위한 선형행렬연산법)

  • Ko, B.G.;Lee, W.I.;Park, G.J.;Ha, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A method using the linear matrix algebra is developed in order to determine unknown external forces in linear structural analyses. The method defines a matrix which represents the linearity of the vibrational analysis for a structural system. The unknown external forces are determined by the operations of the matrix. The method is applied to find an engine motion in an automobile system. For a simulation process, an exhaust system is modeled and analyzed by the finite element method. The validity of the simulation is verified by comparing with the experimental results the free vibration. Also, an experiment on the forced vibration is performed to determine the damping ratio of the exhaust sysetm. Estimated model parameters(natural frequency, mode shape) are in accord with the experimental results. Because the method merely repeats the transpose and inverse operations of a matrix, the solution is extremely easy and simple. Moreover, it is more accurate than the existing methods in that there is no artificial assumptions in the calculation processes. Therefore, the method is found to be reliable for the analysis of the exhaust system considering the characteristics of vibrations. Although the suggested method is tested by only the exhaust system here, it can be applied to general structures.

  • PDF

On methods for extending a single footfall trace into a continuous force curve for floor vibration serviceability analysis

  • Chen, Jun;Peng, Yixin;Ye, Ting
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.179-196
    • /
    • 2013
  • An experimentally measured single footfall trace (SFT) from a walking subject needs to be extended into a continuous force curve, which can then be used as load for floor vibration serviceability assessment, or on which further analysis like discrete Fourier transform can be conducted. This paper investigates the accuracy, applicability and parametrical sensitivity of four extension methods, Methods I to IV, which extends the SFT into a continuous time history by the walking step rate, stride time, double support proportion and the double support time, respectively. Performance of the four methods was assessed by comparing their results with the experimentally obtained reference footfall traces in the time and frequency domain, and by comparing the vibrational response of a concrete slab subjected to the extended traces to that of reference traces. The effect of the extension parameter on each method was also explored through parametrical analysis. This study finds that, in general, Method I and II perform better than Method III and IV, and all of the four methods are sensitive to their extension parameter. When reliable information of walking rate or gait period is available in the test, Methods I or II is a better choice. Otherwise, Method III, with the suggested extension parameter of double support time proportion, is recommended.

Development of Sound Radiation Analysis System Using the Results of Power Flow Finite Element Method (파워흐름유한요소법의 진동해석 결과를 이용한 구조물의 방사소음 해석시스템 개발)

  • 이호원;홍석윤
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.21-30
    • /
    • 2001
  • The analysis system implementing a serial process from structural vibration to sound radiation has been developed using both the power flow finite element method (PFFEM) known as a new vibrational analysis technique in medium to high frequency ranges and the acoustic boundary element method (BEM) which is effective in analyzing the sound radiation problems. The vibration analysis for arbitrary shape structures composed of plates is performed, and using the vibration energy density obtained from this analysis as the velocity boundary conditions for an acoustic analysis, vibro-acoustic analysis has been processed. To verify the developed system, we select a simple structure model and compare the results of developed system with those of SYSNOISE, and also the developed system is applied for the vibro-acoustic analysis of various structures in shapes.

  • PDF

Reduced Mass Effects on the Ring Inversion Vibration of 1,3-Cyclohexadiene (1,3-Cyclohexadiene의 고리반전 진동운동에 미치는 환산질량 효과)

  • Choo, Jae Bum;Han, Seong Jun
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.3
    • /
    • pp.123-129
    • /
    • 1997
  • In order to consider the reduced mass effects on the out-of-plane ring inversion vibration of 1,3-CHD, the vector-based computer program has been written and the kinetic energy expansion function for the large amplitude ring inversion vibration has been calculated using this program. The structural parameters for the calculations have been determined from the ab initio HF/6-31G** calculation. The potential energy function for the out-of-plane ring inversion vibration of 1,3-CHD has been determined from the kinetic energy expansion function and previously reported low-frequency Raman data. The vibrational Hamiltonian calculation including kinetic energy expansion function made it possible to determine the more reliable out-of-plane potential energy function for the ring inversion of 1,3-CHD.

  • PDF

An Evaluation of Elastic Aspects of PVC/MBS by An Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성적 특성 평가)

  • Lee, D.H.;Bahk, S.M.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.603-608
    • /
    • 2001
  • A certain amount of MBS rubber was added to improve toughness of PVC which has a strong tendency of being brittle, producing a mixture, PVC/MBS, from which test specimens were prepared. PVC has strong chemical resistance, oil resistance, frame retardancy and high mechanical strength. Also, it is relatively inexpensive to produce, but shows weakness to impact and difficult for processing. MBS, a typical toughening agent for PVC is generally known, when added in a small amount, to improve impact resistance and to minimize difficulties during the processing of the PVC without adversely affecting the positive aspects of the PVC. In this investigation, attempts were made to observe and determine the variations in elastic and damping constants of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. Generally, the magnitudes of elastic constants decrease while the damping capacity improves when MBS rubber was added.

  • PDF