• 제목/요약/키워드: Vibrational Energy

검색결과 290건 처리시간 0.021초

Conformations and Vibrational Frequencies of a Precursor of Benzovesamicol Analogues Studied by Density Functional Theories

  • Park, Jong-Kil;Choe, Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2311-2316
    • /
    • 2014
  • Conformations and vibrational frequencies of the racemic (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4-tetrahydronaphthalen-2-ol-(I) [(2RS,3RS)-(I)], a precursor of benzovesamicol analogues, have been carried out using various DFT methods (M06-2X, B3LYP, B3PW91, PBEPBE, LSDA, and B3P86) with basis sets of 6-31G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311++G(d,p), cc-pVTZ, and TZVP. The LSDA/6-31G(d) level of theory shows the best performance in reproducing the X-ray powder structure. However, the PBEPBE/cc-pVTZ level of theory is the best method to predict the vibrational frequencies of (2RS,3RS)-(I). The potential energy surfaces of racemic pairs (2RS,3RS)-(I) and -(II) are obtained at the LSDA/6-31G(d) level of theory in the gas phase and in water. The results indicate that (2RS,3RS)-(I) are more stable by ~0.75 kcal/mol in energy than (2RS,3RS)-(II) in water, whereas conformer AIIg and BIIg are more stable by ~0.04 kcal/mol than AIg in gas phase. In particular, the hydrogen bond distances between the N of piperazine and the OH of tetrahydronaphthalen become longer in gas, compared with those in the water phase. Vibrational frequencies calculated at the PBEPBE/cc-pVTZ level of theory in the gas phase are larger than those in water, whereas their intensities in the gas phase are weaker than those in water.

초음파 수술기의 수술 효율성 향상을 위한 진동자 임피던스 측정에 따른 조직 분류 연구 (Classification of Organs Using Impedance of Ultrasonic Surgical Knife to improve Surgical Efficiency)

  • 김홍래;김성천;김광기;김영우
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권3호
    • /
    • pp.141-147
    • /
    • 2013
  • Ultrasonic shears is currently in wide use as an energy device for minimal invasive surgery. There is an advantage of minimizing the carbonization behavior of the tissue due to the vibrational energy transfer system of the transducer by applying a piezoelectric ceramic. However, the vibrational energy transfer system has a pitfall in energy consumption. When the movement of the forceps is interrupted by the tissue, the horn which transfers the vibrational energy of the transducer will be affected. A study was performed to recognize different tissues by measuring the impedance of the transducer of the ultrasonic shears in order to find the factor of energy consumption according to the tissue. In the first stage of the study, the voltage and current of the transducer connecting portion were measured, along with the phase changes. Subsequently, in the second stage, the impedance of the transducer was directly measured. In the final stage, using the handpiece, we grasped the tissue and observed the impedance differences appeared in the transducer To verify the proposed tissue distinguishing method, we used the handpiece to apply a force between 5N and 10N to pork while increasing the value of the impedance of the transducer from 400 ${\Omega}$.. It was found that fat and skin tissue, tendon, liver and protein all have different impedance values of 420 ${\Omega}$, 490 ${\Omega}$, 530 ${\Omega}$, and 580 ${\Omega}$, respectively. Thus, the impedance value can be used to distinguish the type of tissues grasped by the forceps. In the future study, this relationship will be used to improve the energy efficiency of ultrasonic shears.

알켄-오존 반응의 중간 생성물에 대한 ab initio 양자역학적 고찰 (Quantum Mechanical Investigation on the Intermediates of Alkene-Ozone Reaction)

  • 강창덕;김승준
    • 대한화학회지
    • /
    • 제42권2호
    • /
    • pp.161-171
    • /
    • 1998
  • 알켄-오존 반응에서 생성된 중간 생성물로써 primary ozonide (POZ),secondary ozonide (SOZ)그리고 carbonyl oxide의 분자구조, vibrational frequencies그리고 infrared(IR)스펙트럼의 세기 등에 대한 이론적 연구를 high level ab initio 양자역학적 방법(CISD,CCSD)을 사용하여 수행하였다. 일반적으로, polarization function은 결합각과 결합길이를 감소시키는 경향을 보였고 반면, electron correlation effect는 결합길이와 결합각을 약간 증가시키는 경향을 보이고 있다. Carbonyl oxide의 분자구조는 zwitterionic form이 diradical form보다 더 안정한 것으로 예측되었으며, 두 형태의 에너지는 차이는 TZ2P CISD level에서 약 22.4 kcal/mol인 것으로 계산되었다. 또한, POZ과 SOZ의 분자구조 및 harmonic vibrational frequencies들을 실험결과와 비교 분석하였으며 IR세기에 근거하여 각 vibrational mode를 assign 하였다.

  • PDF

The Influence of Collision Energy on the Reaction H+HS→H2+S

  • Liu, Yanlei;Zhai, Hongsheng;Zhu, Zunlue;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3350-3356
    • /
    • 2013
  • Quasi-classical trajectory calculations have been carried out for the reaction H+HS by using the newest triplet 3A" potential energy surface (PES). The effects of the collision energy and reagent initial rotational excitation are studied. The cross sections and thermal rate constants for the title reaction are calculated. The results indicate that the integral cross sections (ICSs) are sensitive to the collision energy and almost independent to the initial rotational states. The ro-vibrational distributions for the product $H_2$ at different collision energies are presented. The investigations on the vector correlations are also performed. It is found that the collision energies play a postive role on the forward scatter of the product molecules. There is a negative influence on both the alignment and orientation of the product angular momentum for low collision energy at low energy region. Whereas the influence of collision energy is not obvious at high energy region.

Energy Flow and Bond Dissociation of Vibrationally Excited Toluene in Collisions with N2 and O2

  • Ree, Jongbaik;Kim, Sung Hee;Lee, Sang Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권5호
    • /
    • pp.1494-1502
    • /
    • 2013
  • Energy flow and C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited toluene in the collision with $N_2$ and $O_2$ have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited toluene upon collision is not large and it increases slowly with increasing total vibrational energy content between 5,000 and 45,000 $cm^{-1}$. Intermolecular energy transfer occurs via both of V-T and V-V transfers. Both of V-T and V-V transfers increase as the total vibrational energy of toluene increases. When the total energy content $E_T$ of toluene is sufficiently high, either C-H bond can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability, and that in the collision with $N_2$ is larger than with $O_2$.

Simulation of Material Properties of Amorphous Carbon Nitride with Non-uniform Nitrogen Distribution

  • Lu, Y.F.;He, Z.F.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2001
  • A simulation method is proposed to study the amorphous structure of carbon nitride. The material properties of a non-uniform nitrogen distribution in an amorphous CN matrix can be studied. The cohesive energy of a group of randomly generated atoms can be minimized to find the relative positions of atoms. From the calculated configuration of atoms, many properties of amorphous carbon nitride can be calculated such as bulk modulus, P-V curve, sp$^3$/sp$^2$ ratio of carbon, and vibrational spectra. The calculation shows that the cohesive energy of non-uniform nitrogen distribution is lower than that of a uniform distribution. This may suggest that the regular structure of carbon nitride can at most be metastable. It is not easy to incorporate nitrogen atoms into a carbon matrix.

  • PDF

파워흐름해석 프로그램을 이용한 2300 TEU 컨테이너선의 중고주파 대역 진동해석 (Vibration analysis of 2300 TEU container ship using power flow analysis program in medium-to-high frequency ranges)

  • 서성훈;박영호;홍석윤;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1061-1066
    • /
    • 2001
  • To predict vibrational energy density and intensity of beam-plate coupled complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for plate, beam and some coupled structural elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint elements. Using the developed PFFEM program, vibration analysis for 2300TEU container ship model is performed and here the model data for this program are obtained by converting fonner FE model for structural analysis. This program predicts successfully the vibrational energy density and intensity upto 8,000 Hz for the ship model with over 50,000 DOF.

  • PDF

Energetics of In-plane Motions in Coupled Plate Structures

  • Park, Young-Ho;Park, Chang Hyun
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.428-435
    • /
    • 2020
  • Energy flow analysis (EFA) has been used to predict the frequency-averaged vibrational responses of built-up structures at high frequencies. In this study, the frequency-averaged exact energetics of the in-plane motions of the plate were derived for the first time by solving coupled partial differential equations. To verify the EFA for the in-plane waves of the plate, numerical analyses were performed on various coupled plate structures. The prediction results of the EFA for coupled plate structures were shown to be accurate approximations of the frequency-averaged exact energetics, which were obtained from classical displacement solutions. The accuracy of the results predicted via the EFA increased with an increase in the modal density, regardless of various structural parameters. Therefore, EFA is an effective technique for predicting the frequency-averaged vibrational responses of built-up structures in the high frequency range.

Methodology for predicting optimal friction support location to attenuate vibrational energy in piping systems

  • Minseok Lee;Yong Hoon Jang;Seunghun Baek
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1627-1637
    • /
    • 2024
  • This research paper proposes a novel methodology for predicting the optimal location of friction supports to effectively mitigate vibrational energy in piping systems. The incorporation of friction forces in the dynamic characteristics of the system introduces inherent nonlinearity, making its analysis challenging. Typically, numerical solutions in the time domain are employed to circumvent the complexities associated with finding analytic solutions for nonlinear systems. However, time domain analysis (TDA) can be computationally intensive and demand significant computational resources due to the intricate calculations stemming from nonlinearity. To address this computational burden, this study presents an efficient approach based on linear analysis to predict the ideal position for installing friction supports as a replacement for fixed supports. Furthermore, we investigate the relationship between the installation positions of friction supports and their effectiveness in absorbing vibrations using the harmonic balanced method (HBM). Both methodologies are validated by comparing the obtained results with those obtained through time domain analysis (TDA) using the finite element method (FEM).