• Title/Summary/Keyword: Vibration-Based

Search Result 5,295, Processing Time 0.03 seconds

Study on the Prediction of Ground-Borne Vibration with Distance induced by Subway Transit System (지하철에 의한 거리별 지반진동 예측에 관한 연구)

  • 김득성;김형곤;장서일
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.597-602
    • /
    • 2002
  • This study reviews several of the procedures that have been used to predict ground-born vibration. The vibration responses are measured at three sites that have different soil qualities. The measured vibration levels are compared with the predicted results by previously used vibration level prediction models. In this study a numerical method, which is based on explicit differential method, is used to compensate tot existing prediction models. Although numerically computed results are not quantitatively in good agreement with the measured results, the trends are comparable in the sense that vibration level does not decrease monotonically with distance. Also, The site with the deepest tunnel gives the highest vibration level.

  • PDF

Dynamic Modulation Transfer Function Analysis of Images Blurred by Sinusoidal Vibration

  • Du, Yanlu;Ding, Yalin;Xu, Yongsen;Sun, Chongshang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.762-769
    • /
    • 2016
  • The dynamic modulation transfer function (MTF) for image degradation caused by sinusoidal vibration is formulated based on a Bessel function of the first kind. The presented method makes it possible to obtain an analytical MTF expression derived for arbitrary frequency sinusoidal vibration. The error obtained by the use of finite order sum approximations instead of infinite sums is investigated in detail. Dynamic MTF exhibits a stronger random behavior for low frequency vibration than high frequency vibration. The calculated MTFs agree well with the measured MTFs with the slant edge method in imaging experiments. With the proposed formula, allowable amplitudes of any frequency vibration are easily calculated. This is practical for the analysis and design of the line-of-sight stabilization system in the remote sensing camera.

Vibration Monitoring of a 1kW Small Wind Turbine Generator (1kW소형 풍력발전기의 진동 모니터링)

  • Kim, Seock-Hyun;Nam, Y.S.;Yoo, N.S.;Kim, Yun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.308-311
    • /
    • 2006
  • A vibration monitoring is performed on a 1kW class stand alone wind turbine(W/T). When a W/T model is developed, general performance under various wind condition should be verified to introduce the product in the market. Especially, vibration characteristics within operating speed range are very important in the aspect of structural stability as well as generator's electrical efficiency. This paper examines the vibration performance of a home made 1kW W/T Various data of the W/T model are acquired in real time using a remote vibration monitoring system installed in Daekwanryung test site. Vibration stability of the W/T structure is diagnosed based upon the data and the result is used to estimate the applicability of the W/T model.

  • PDF

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • Chang, Tae-Jin;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

A New Approach to Identify Optimal Properties of Shunting Circuits for Maximum Damping of Structural vibration using Piezoelectric Patches (파동전달 특성을 이용한 압전션트 감쇠의 새로운 최적화방법)

  • Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.465-468
    • /
    • 2004
  • The performance of the piezoelectric patches as vibration control elements depends on the shunting electronics which are designed to dissipate vibration energy through a resistive element. In this study, tuning of the shunting circuits is performed based on the wave propagation characteristics. Optimization of the electronic component is performed depending on the dynamic and geometric properties which include boundary conditions and position of the shunted piezoelectric patch relative to the structure. The developed tuning methods showed superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions.

  • PDF

Analysis of the Coupled Vibration for Traveling Wheel (주행 중 차륜의 연성 진동 해석)

  • 류윤선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.352-357
    • /
    • 1997
  • The coupled vibration of a wheel-railway track system has been considered as that of a moving mass on a beam. In this paper, an analytical model is proposed to analyze the coupled vibration when a wheel travels on a railway track. The railway track supported by sleepers is considered as a beam on Winkler's foundations, and the wheel traveling on railway track at constant speed is considered as a moving mass. Hertz's contact stiffness is assumed between the wheel and railway track. Numerical results are compared with experimental ones to verify the validity of the numerical method. The numerical method in found to be efficient to analyze this system. Based on the numerical simulation, the appropriate analysis range of the beam model and the characteristics of coupled vibration are discussed.

  • PDF

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

  • PDF

Analysis and Reduction of Escalator Vibration Using the Response Surface Methodology (반응 표면법을 이용한 에스컬레이터의 진동 저감에 관한 연구)

  • Lim, Su-Young;Kwon, Yi-Sug;Park, Chan-Jong;Hong, Seong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.623-628
    • /
    • 2000
  • This paper deals with an analysis and reduction of escalator vibration by using the response surface model. Optimization of the escalator vibration is performed by minimization of the vibration responses which are measured at steps. The response surface models of the factors are constructed by using the experimental data based on the D optimal design method. The multi-objective optimization is also performed by applying desirability function and overlaid contour plot techniques. The optimal solution, which is obtained for a typical escalator system, is applied to reduce the escalator vibration.

  • PDF

Vibration Tactile Foreign Language Learning: The Possibility of Embodied Instructional Media

  • JEONG, Yoon Cheol
    • Educational Technology International
    • /
    • v.14 no.1
    • /
    • pp.41-53
    • /
    • 2013
  • On the basis of two premises and embodied cognition theory, the vibration tactile learning is proposed as an effective method for foreign language learning. The premises are: the real nature of language is sound and the source of sound is vibration. According to embodied cognition theory, cognition is inherently connected to bodily sensation rather than metaphysical and independent. As a result, the vibration tactile learning is: people are able to learn foreign language better by listening to sound and experiencing its vibration through touch rather than solely listening to sound. The effectiveness of vibration tactile learning is tested with two instructional media theories: media comparison and media attribute. For the comparison, an experiment is conducted with control and experimental groups. The attributes of vibration tactile media are investigated in points of relationships with the learning process. The experiment results indicate a small effect on the increased mean score. Three kinds of relationships are found between the media attribute and learning process: enforced stimulus, facilitated pronunciation, and assimilation of resonance to sound patterns through touch. Finally, this paper proposes a new theoretical development for instructional media research: an embodied cognition based media research and development.

The Design of an Optical Pick-up Actuator Suspension (광픽업용 서스펜션의 개발연구)

  • 김윤영;윤민수;김진홍;박의호;한준용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.136-141
    • /
    • 1996
  • A new suspension model of an optical pick-up actuator is developed. This model is very stable and easily manufactured owing to its specially designed geometry. In designing the suspension, the first two natural frequencies are kept lying in a certain range and sub-resonance frequencies are made as high as possible. The vibration and sensitivity analysis needed for optimal design is based on a simplified beam model of the bobbin-suspension structure. The investigation of the strain energy distribution in each vibration mode appears to be very useful.

  • PDF