• 제목/요약/키워드: Vibration velocity model

검색결과 361건 처리시간 0.021초

Verification Test and Model Updating for a Nuclear Fuel Rod with Its Supporting Structure

  • H. S. Kang;K. N. Song;Kim, H. K.;K. H. Yoon;Y. H. Jung
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.73-82
    • /
    • 2001
  • Pressurized water reactor(PWR) fuel rods. which are continuously supported by a spring system called a spacer grid(SG), are exposed to reactor coolant at a flow velocity of up to 6-8 m/s. It is known that the vibration of 3 fuel rod is generated by the coolant flow, a so-called flow-induced-vibration(FIV), and the relative motion induced by the FIV between the fuel rod and the SG can wear away the surface of the fuel rod, which occasionally leads to its fretting failure. It is, therefore, important to understand the vibration characteristics of the fuel rod and reflect that in its design. In this paper, vibration analyses of the fuel rod with two different SGs were performed using both analytical and experimental methods. Updating of the finite element(FE) model using the measured data was performed in order to enhance confidence in the FE model of fuel rods supported by an SG. It was found that the modal parameters are very sensitive to the spring constant of the SG.

  • PDF

The influence of vehicles on the flutter stability of a long-span suspension bridge

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Zhang, Jianren;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.275-292
    • /
    • 2015
  • The presence of traffic on a slender long-span bridge deck will modify the cross-section profile of the bridge, which may influence the flutter derivatives and in turn, the critical flutter wind velocity of the bridge. Studies on the influence of vehicles on the flutter derivatives and the critical flutter wind velocity of bridges are rather rare as compared to the investigations on the coupled buffeting vibration of the wind-vehicle-bridge system. A typical streamlined cross-section for long-span bridges is adopted for both experimental and analytical studies. The scaled bridge section model with vehicle models distributed on the bridge deck considering different traffic flow scenarios has been tested in the wind tunnel. The flutter derivatives of the modified bridge cross section have been identified using forced vibration method and the results suggest that the influence of vehicles on the flutter derivatives of the typical streamlined cross-section cannot be ignored. Based on the identified flutter derivatives, the influence of vehicles on the flutter stability of the bridge is investigated. The results show that the effect of vehicles on the flutter wind velocity is obvious.

비원형 단면의 선삭 가공시 발생하는 진동해석 (Vibration Analysis of a Lathe Performing Non-Circular Cutting)

  • 신응수;박정호
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.291-298
    • /
    • 2000
  • This paper intends to provide an analytic vibrational model of non-circular cutting by a lathe and to investigate its stability criteria. A single degree-of-freedon model based on the orthogonal cutting theory has the characteristics of parametric excitation due to the nonlinear cutting force that changes periodically its direction as well as its magnitude. The Floquet theory has been applied to investigate the stability of the linearized system and the stability diagrams have been obtained with respect to the ovality, the cut velocity and the cut depth. Also nonlinear analysis has been performed to verify the linear analysis and compare the results with those from circular cutting. Results show that a critical cut depth is decreased as the ovality is increased while a critical cut velocity is increased as the ovality is increased. Also, a good agreement in critical conditions has been observed between the linear and nonlinear analyses for the ovality less than 2%. Accordingly, the linear analysis can be said to be applicable for most practical oval cuttings whose ovality are much less than 2%.

  • PDF

직접방사형 스피커의 음향특성 해석및 설계 (Acoustic Analysis and Design of a Direct-Radiator-Type Loudspeaker)

  • 김준태;김정호;김진오
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.274-282
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on the numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculated the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. Some design parameters have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

Ambient vibration tests on a 19 - story asymmetric steel building

  • Shakib, H.;Parsaeifard, N.
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.1-11
    • /
    • 2011
  • Ambient vibration tests were carried out to evaluate the dynamic properties of an asymmetric steel building with semi-rigid connections. The test case has many non-structural elements, constructed in the city of Tehran (Iran). The tests were conducted to obtain natural frequencies, mode shapes and damping ratio of the structure and then Fourier transform were used to analyze the velocity records obtained from the tests. The first and second natural periods of the building were obtained as 1.37 s and 1.28 s through the test and damping ratio for the first mode was calculated as 0.047. However, Natural periods obtained from finite element model have higher values from those gained from ambient vibration. Then the model was calibrated by modeling of the in-fill masonry panels at their exact locations and considering the boundary conditions by modeling two blocks near the block No. 3, but the differences were existed. These differences may be due to some hidden stiffness of nonstructural elements in the low range of elastic behavior, showing the structure stiffer than it is in reality.

주행차량에 의한 교량의 동적거동과 음향방사특성 (Sound Radiation from Vibrating Bridges subjuct to Moving Vehicles)

  • 김상효;이용선;장원석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.45-51
    • /
    • 2002
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle 8 DOFs truck model and a 5-axle 13 DOFs semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. Although the noise produced by the bridge vibration is not serious in itself, which is below the audible frequency range, it should be considered as an interaction problem between vehicle noise and bridge vibration noise in order to evaluate the traffic noise around the bridge.

  • PDF

Herschel-Bulkley 모델을 이용한 MR 댐퍼 승용차의 제어 성능 고찰 (Control Performance Investigation of MR Fluid Damper using Herschel-Bulkley Shear Model)

  • 이덕영;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.323-328
    • /
    • 2002
  • The control performance of a vehicle installed with an MR(magnetorheological) fluid-based damper is investigated on the basis of Herschel-Bulkley shear model. Generally, most of MR fluid damper has been analyzed based on a simple Bingham-plastic shear model. However, the Bingham-plastic shear model can not well describe the behavior of the damper on the condition of high velocity and high current field input. Therefore, in this study, the Herschel-Bulkley shear model in which the constant post-yield plastic viscosity in Bingham model is replaced with a power law model dependent on shear rate is used to assess control performance of a vehicle with MR fluid damper suspension system. This study deals with a two-degree-of-freedom suspension using the MR fluid damper for a quarter car model. The response for the bump input to identify the fastness of MR fluid damper embedded skyhook controller and requested magnetic field are investigated.

  • PDF

사각형 탱크 보강판의 유체구조 연성진동에 대한 이론적 인구 (Analytical Study on Hydroelastic Vibration of Stiffened Plate for a Rectangular Tank)

  • 김극수;김대웅;이영범;;최수현;김용수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.65-68
    • /
    • 2005
  • In this paper, a theoretical study is carried out on the hydroelastic vibration of a rectangular tank wall. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to wall vibration. In addition, the vibration characteristics of stiffened wall of the rectangular tank are investigated. Assumed mode method is utilized to the stiffened plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method and then added mass effect is discussed due to tank length and potential mode.

  • PDF

Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.112-118
    • /
    • 2010
  • The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

A simplified vortex model for the mechanism of vortex-induced vibrations in a streamlined closed-box girder

  • Hu, Chuanxin;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.309-319
    • /
    • 2021
  • The vortex-drift pattern over a girder surface, actually demonstrating the complex fluid-structure interactions between the structure and surrounding flow, is strongly correlated with the VIVs but has still not been elucidated and may be useful for modeling VIVs. The complex fluid-structure interactions between the structure and surrounding flow are considerably simplified in constructing a vortex model to describe the vortex-drift pattern characterized by the ratio of the vortex-drift velocity to the oncoming flow velocity, considering the aerodynamic work. A spring-suspended sectional model (SSSM) is used to measure the pressure in wind tunnel tests, and the aerodynamic parameters for a typical streamlined closed-box girder are obtained from the spatial distribution of the phase lags between the distributed aerodynamic forces at each pressure point and the vortex-excited forces (VEFs). The results show that the ratio of the vortex-drift velocity to the oncoming flow velocity is inversely proportional to the vibration amplitude in the lock-in region and therefore attributed to the "lock-in" phenomena of the VIVs. Installing spoilers on handrails can destroy the regular vortex-drift pattern along the girder surface and thus suppress vertical VIVs.