• Title/Summary/Keyword: Vibration velocity model

Search Result 361, Processing Time 0.025 seconds

SIMPLE MODELS TO INVESTIGATE THE EFFECT OF VELOCITY DEPENDENT FRICTION ON THE DISC BRAKE SQUEAL NOISE

  • Shin, K.;Brennan, M.J.;Joe, Y.G.;Oh, J.E.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 2004
  • This paper suggests two simple two-degree-of-freedom models to describe the dynamical interaction between the pad and the disc of a disc brake system. Separate models for in-plane and out -of-plane vibration are described. Although a brake pad and disc have many modes of vibration, the interaction between a single mode of each component is considered as this is thought to be crucial for brake noise. For both models, the pad and the disc are connected by a sliding friction interface having a velocity dependent friction coefficient. In this paper, it is shown that this friction model acts as negative damping in the system that describes the in-plane vibration, and as negative stiffness in system that describes the out-of-plane vibration. Stability analysis is performed to investigate the conditions under which the systems become unstable. The results of the stability analysis show that the damping is the most important parameter for in-plane vibration, whereas the stiffness is the most important parameter for the out-of-plane vibration.

Coupled analysis for the influence of blasting-induced vibration on adjacent dam (발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토)

  • Park, Inn-Joon;Kim, Sung-In;Nam, Kee-Chun;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • The numerical investigation for the effects of blasting-induced vibration on adjacent dam and pore water pressure fluctuation was conducted through solid-water coupled analysis under dynamic loading. The stability of dam was examined by peak particle velocity of core. Pore water pressure distributions were calculated by steady state flow analysis using coupled analysis on ground water and blasting-induced vibration. The influence of pore water pressure and the effective stress distribution in the ground were also investigated. Furthermore, effective stress alteration was examined by applying Finn & Byrne Model to monitor the generation and dissipation of pore water pressure.

  • PDF

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

An Experimental Work on Cross Flow Induced Vibration of Staggered Array Pipe Bundles (어긋난 배열 을 갖는 파이프 집합체 의 횡유동 관련 진동 에 관한 실험적 연구)

  • 박윤식;이진희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.24-30
    • /
    • 1985
  • An experimental work to predict critical flow velocity to give whirling instability on staggered array tube banks model which is located in wind tunnel is presented. The critical flow velocity was obtained by measuring flow induced tube vibration on three tube array models having different pitch to diameter ratio as changing damping ratio and natural frequency of tube model. The obtained experimental results are directly compared with the numbers of other investigators and partly proved the truth of Blevin's new idea to predict critical flow velocity.

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber (유동속도가 단순확장관 음향투과손실에 미치는 영향 해석)

  • Kwon, Jin;Jeong, Weui-Bong;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

Vibration and stability of fluid conveying pipes with stochastic parameters

  • Ganesan, R.;Ramu, S. Anantha
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.313-324
    • /
    • 1995
  • Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

Response Characteristics of Forced Vibration Model with Sinusoidal Exciting Force (정현파로 가진한 강제진동 해석과 응답특성)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.131-137
    • /
    • 2020
  • The characteristics of forced vibration with excited sinusoidal force was introduced. Also, numerical analyses and FRF in frequency domain were performed in detail. In this regard, the responses of displacement, velocity and acceleration were investigated in a forced vibration model. The FRF characteristics in real and imaginary part around natural frequency are also discussed. This response approach of forced vibration in time domain is used for the identification and monitoring of sinusoidal forced vibration. For acquiring a displacement, velocity and acceleration, a numerical technique of Runge-Kutta-Gill method was performed. For the FRF(frequency response function), These responses are used. Also, the FRF can represent the intrinsic characteristics of the forced vibration. These performed results and analysis are successful in each damped condition for the forced vibration model. After numerical analysis of the different mass, damping and stiffness, the forced vibration response characteristics with sinusoidal force was discriminated considering its amplitude and frequency simultaneously.

Prediction of Delamination for Composite Laminates Using Sound Radiation (음향을 이용한 복합 적층판의 층간분리 예측)

  • Kim, Sung-Joon;Chae, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.800-804
    • /
    • 2005
  • In this paper, the radiated sound pressure induced by low velocity impact is obtained by solving the Rayleigh integral equation. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. It is well known that the presence of the delamination in a composite laminate introduces a local flexibility which changes the dynamic characteristic of the structure. The 2-D simplified delamination model is used to analyze the impact response. And the 3-D non-linear finite element model is developed using gap element to avoid the overlap and penetration between the upper and lower sub-laminates at delamination region. Predicted impact response using 2-D equivalent delamination model are compared with the numerical ones from the 3-D non-linear finite element model.

  • PDF

A Prediction Model of Piston Slap Induced Vibration Velocity of Engine Block Surface (피스톤 슬랩에 의해 발생되는 엔진 블록의 표면 진동 속도 예측 모델)

  • 안상태;조성호;김양한;이동수
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.587-592
    • /
    • 1999
  • Piston slap is one of the sources producing engine block surface vibration and mechanical noise. To analyze piston slap-induced vibration, a realistic but simple model is proposed and verified experimentally. A piston is modeled by 3 degree of freedom system and an impact point between piston skirt and cylinder wall by 2 degree of freedom system. Numerical simulation estimates impact forces of piston in cylinder, and the engine block surface vibration response is predicted by the convoluton of the impact forces with measured impulse responses. Experimental verification on the predicted response has been also performed by using a commercial 4-cylinder diesel engine. the predicted and experimental vibration responses confirm that the suggested model is practically useful.

  • PDF