• 제목/요약/키워드: Vibration response analysis

검색결과 1,762건 처리시간 0.027초

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

Prediction of nonlinear characteristics of soil-pile system under vertical vibration

  • Biswas, Sanjit;Manna, Bappaditya;Choudhary, Shiva S.
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.223-240
    • /
    • 2013
  • In the present study an attempt was made to predict the complex nonlinear parameters of the soil-pile system subjected to the vertical vibration of rotating machines. A three dimensional (3D) finite element (FE) model was developed to predict the nonlinear dynamic response of full-scale pile foundation in a layered soil medium using ABAQUS/CAE. The frequency amplitude responses for different eccentric moments obtained from the FE analysis were compared with the vertical vibration test results of the full-scale single pile. It was found that the predicted resonant frequency and amplitude of pile obtained from 3D FE analysis were within a reasonable range of the vertical vibration test results. The variation of the soil-pile separation lengths were determined using FE analysis for different eccentric moments. The Novak's continuum approach was also used to predict the nonlinear behaviour of soil-pile system. The continuum approach was found to be useful for the prediction of the nonlinear frequency-amplitude response of full-scale pile after introducing the proper boundary zone parameters and soil-pile separation lengths.

동적응답의 변화를 고려한 점용접부의 진동피로해석 (Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response)

  • 강기원;장일주;김정규
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1193-1199
    • /
    • 2010
  • 점용접은 자동차 산업에서 차체 구조물의 대표적 접합방법으로서 차량에 피로하중이 작용할 경우 구조물 전체의 파손 발생이전에 점용접부 일부에 조기 피로파손의 발생가능성이 존재한다. 이러한 점용접부의 국부적 파손은 차량 구조물의 동적 반응 및 이에 따른 피로거동의 변화를 야기할 가능성이 존재한다. 따라서 차량과 같이 스펙트럼하중을 받는 구조물의 피로수명 평가를 위해서는 이러한 점용접부의 국부적 파손에 의한 동적 반응의 변화를 고려하여야 한다. 본 논문에서는 점용접부의 누적피로손상으로 인한 동적반응의 변화를 고려한 진동피로해석을 수행하였다. 이에 필요한 S-N 선도는 전단 점용접 시험편에 대한 일정진폭 피로시험을 통하여 획득하였다. 또한 스펙트럼하중하의 점용접부의 피로수명은 유한요소해석에 기반한 진동피로해석을 통하여 평가하였다.

지진기반 가진효과를 고려한MW 급 풍력발전기 타워의 구조진동 특성연구 (Structural Vibration Characteristics of a MW-Class Wind Turbine Tower Considering Earthquake Base Excitation)

  • 김동만;박강균;김동현;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.616-620
    • /
    • 2009
  • Modern wind turbines have been mainly erected in region where earthquake are rare or normally weak, especially Korea was thought as safety zone from earthquake. But recently, the earthquake occurs more and more frequently. So, the wind turbine design is required the structural and functional stability under the earthquake. The earthquake can influence normal operation, even if a weak earthquake. There are two ways to review the design under earthquake using Computer Applied Engineering (CAE). One is the Response Spectrum Analysis (RSA) the other is Time History Analysis (THA). In this research, dynamic response on time is obtained under the earthquake by taking into account ground accelerogram consistent with the relevant standards applied to the turbine foundation.

  • PDF

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

엔진 및 프로펠러 가진에 의한 위그선 복합재 날개 진동 해석 (Investigation on Forced Vibration Behavior of Composite Main Wing Structure Excited by Engine and Propeller)

  • 공창덕;윤재휘;박현범
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.217-221
    • /
    • 2007
  • 본 연구에서는 대상체인 소형 위그선의 주날개 구조를 엔진 및 프로펠러의 기진에 의한 강제진동 해석을 수행하였다. 대상 위그선은 2행정의 왕복엔진을 날개의 좌 우에 각각 장착하여 프로펠러에 의한 추력으로 비행하며, 미는 형식(Pusher Type)의 엔진 배열을 취하고 있다. 엔진의 주요 진동 특성인 H-mode 와 X-mode 를 특정 가진 주파수로 하여 주파수 응답 해석을 수행하였고, 엔진의 횡방향 진동 모드인 L-mode를 프로펠러에 회전에 의해 진동을 수반하는 기진 추력으로 가정하여 과도응답 해석을 수행하였다.

  • PDF

주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석 (Vibration Analysis of wind turbine gearbox with frequency response analysis)

  • 박현용;박정훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

A response spectrum method for seismic response analysis of structures under multi-support excitations

  • Li, Jian-Hua;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • 제21권3호
    • /
    • pp.255-273
    • /
    • 2005
  • Based on the random vibration theory, a response spectrum method is developed for seismic response analysis of linear, multi-degree-of-freedom structures under multi-support excitations is developed. Various response quantities, including the mean and variance of the peak response, the response mean frequency, are obtained from proposed combination rules in terms of the mean response spectrum. This method makes it possible to apply the response spectrum to the seismic reliability analysis of structures subjected to multi-support excitations. Considering that the tedious numerical integration is required to compute the spectral parameters and correlation coefficients in above combination rules, this paper further offers simplified procedures for their computation, which enhance dramatically the computational efficiency of the suggested method. The proposed procedure is demonstrated for tow numerical examples: (1) two-span continuous beam; (2) two-tower cabled-stayed bridge by using Monte Carlo simulation (MC). For this purpose, this paper also presents an approach to simulation of ground motions, which can take into account both mean and variation properties of response spectrum. Computed results based on the response spectrum method are in good agreement with Monte Carlo simulation results. And compared with the MSRS method, a well-developed multi-support response spectrum method, the proposed method has an incomparable computational efficiency.

설계 민감도 해석을 활용한 진동내구 예측방법 연구 (Vibration fatigue prediction using design sensitivity analysis)

  • 김찬중;주형준;신성영;권성진;이봉현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.488-493
    • /
    • 2011
  • Authors previously suggested the design sensitivity analysis based on transmissibility function and identified the sensitivity of measured point over the small modification of system dynamics. On the other hand, the acceleration data will not reveal the strain information at the same location and authors suggested energy isoclines that successfully predict the fatigue damage on the interesting location to overcome the drawback of acceleration over fatigue society. Both of methodologies, sensitivity analysis and fatigue damage prediction, commonly use the response acceleration response as main indicator. In this paper, authors investigate the advanced method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with finite element model of a simple notched specimen and the prediction of fatigue damage at notched location is conducted for accelerations at different measurement locations that show different sensitivity contribution, either.

  • PDF

유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구 (A Study on the Vibration Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction)

  • 손충렬;김경수;변효인
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.19-25
    • /
    • 2001
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. This paper introduces two methods to find natural frequency in consideration of fluid-structure interaction, direct coupled vibration analysis and fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze the vibration characteristic of a submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage. The underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M. model is meshed by shell and beam elements. Also, considering the inner hull weight, the mass element is distributed in the direction of hull length. Numerical calculations are accomplished by using the commercial B.E.M. code. The characteristics of natural frequency, mode shape and frequency-displacement response are analyzed.

  • PDF