• Title/Summary/Keyword: Vibration response analysis

Search Result 1,767, Processing Time 0.029 seconds

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.

Analysis Study on Vibration Durability on Lens Manufacturing System of Camera (카메라의 렌즈 생산 시스템에 대한 진동 내구성에 관한 해석 연구)

  • Cho, Jae-Ung;Kim, Young-Choon;Joung, Woon-Se
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2617-2622
    • /
    • 2014
  • In this study, the critical frequency happened at system is analyzed when the motor of camera manufacturing system is working on the direction of Z axis. Configurations of modes at natural frequencies happened at two models are investigated by the study result through modal analysis. The range of natural frequency in this study system is from 100 Hz to 500 Hz. At this range, the maximum equivalent stress in case of 20 kg weight becomes 6.2335MPa and this stress is shown as 50 times more than in case of 10 kg weight. The working safety of system can be investigated through the analyses of natural frequency and harmonic response of this camera manufacturing system.

Fracture Analysis on Crack Propagation of RC Frame Structures due to Extreme Loadings (극한 진동에 의한 철근콘크리트 뼈대구조물에 균열전파의 파괴 역학적 특성 연구)

  • Jeong, Jae-Pyong;Lee, Myung-Gon;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.191-199
    • /
    • 2003
  • The inelastic response of many structural steel and reinforced concrete structures subject to extreme loadings can be characterized by elastoplastic behaviors. Although excursion beyond the elastic range is usually not permitted under normal conditions of service, the extent of permanent damage a structure may sustain when subjected to extreme conditions, such as severe blast or earthquake loading, is frequently of interest to the engineer. A blast is usually the result of an explosion defined as a "sudden expansion". This paper discusses the basic concept that defines blast loadings on structures and corresponding elastoplastic structural response (displacement, velocity, and acceleration) and try to explain a crack propagation of concrete in sudden expansion. According to nonlinear finite element analysis, the crack forms of static and dynamic states displayed different in RC structural members. This paper also provides useful data for the dynamic fracture analysis of RC frame structures.

Development of Lightweight Composite Sub-frame in Automotive Chassis Parts Considering Structure & NVH Performance (구조 및 NVH 성능을 고려한 복합재료 서브프레임 개발)

  • Han, Doo-Heun;Ha, Sung
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, according to environmental regulations, the automobile industry has been conducting various research on the use of composite materials to increase fuel efficiency. However, there has not been much research on lightweight chassis components. Therefore, in this research, the purpose of this study is to apply composite materials to the sub-frame of chassis components to achieve equivalent levels of stiffness, strength, NVH performance and 50% lightweight compared to the steel sub-frame. First, the Natural frequency of steel and composite specimens was compared to the damping characteristics of composite materials. Then, in this study, the Lay-up Sequence was derived to maximize the stiffness and strength of the sub-frame by applying composite materials. And this lay-up Sequence is proposed to avoid heat shrinkage due to curing during manufacturing. This process was designed based on a FEM structural analysis, and a Natural frequency and frequency response function graph was confirmed based on a modal analysis. The prototype type composite sub-frame was manufactured based on the design and the F.E.M analysis was verified through a modal experiment. Furthermore, it was fitted to the actual vehicle to verify the natural frequency and the indoor noise vibration response, including idling and road noise. This result was confirmed to be equivalent to the steel sub-frame. Finally, the composite sub-frame weight was confirmed to be about 50% of the steel sub-frame.

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

Output only structural modal identification using matrix pencil method

  • Nagarajaiah, Satish;Chen, Bilei
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.395-406
    • /
    • 2016
  • Modal parameter identification has received much attention recently for their usefulness in earthquake engineering, damage detection and structural health monitoring. The identification method based on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross-correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The numerical simulation results show that this technique can identify modal parameters accurately even if the noise level is high.

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

Spectrum Analysis of Seismic Responses of a Building during an Earthquake (지진 시 콘크리트 합성 빌딩 내 지진 거동의 스펙트럼 해석)

  • Kaloop, Mosbeh R.;Choi, Seok-Jun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • This study presents the design and implementation of a structural health monitoring system based on acceleration measurements which used to observe and investigate the structural performance of the administration building in Seoul National University of Education during an earthquake event. The frequency and spectrum are analyzed to assess the building performance during an earthquake shaking which took place on March 31st, 2014. The results indicate that : the vibration of the roof is more clear and dominant during the shaking, and the response of building during earthquake is so small and safe.

Cogging Torque Reduction of Interior Permanent Magnet Motor Using Statistical Method (통계적 기법을 이용한 매입형 영구자석 전동기의 코깅토크 저감)

  • Kim, Jung-Gyo;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.287-291
    • /
    • 2006
  • Recently, various applications of permanent-magnet(PM) electric motor have been more increased. Compared with the other electric motors, PM electric motor has cogging torque which results from the interaction between PM of rotor and slot-teeth structure of stator. Audible noise and vibration is caused by this cogging torque. So, the reduction of cogging torque is main designing goal of PM electric motor. The purpose of this paper is to realize the decrease of cogging torque using new experimental design and response surface analysis which is one of the statistical methodologies.