• 제목/요약/키워드: Vibration protection

검색결과 139건 처리시간 0.028초

콘크리트 배수관로 보호구의 지반진동 저감 성능에 관한 수치해석적 연구 (Numerical Study on Ground Vibration Reduction Performance of Concrete Drainage Protection Facility)

  • 정승원;김정규;김준하;;김종관
    • 화약ㆍ발파
    • /
    • 제39권4호
    • /
    • pp.12-21
    • /
    • 2021
  • 본 연구에서는 발파진동에 대한 콘크리트 배수관로 보호구의 내진성능을 비교하기 위해 일련의 FEM 수치해석을 수행하였다. 비교 대상은 본 연구에서 제안하는 두 종류의 ㅁ 형태의 보호구와 재래식의 ㄷ 형태의 보호구이다. 해석 과정에서는 폭원 이격거리와 지발당 장약량을 변화시키면서 세 종류의 보호구의 내진 저항을 비교하였다. 그 결과, 본 연구에서 제안하는 두 종류의 보호구가 진동저감 성능의 측면에서 재래식 보호구에 비해 더 우수한 것으로 나타났다.

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

원심모형실험을 통한 EPS 차단벽의 방진효과에 관한 연구 (A Study on the Vibration Protection Efficiency of EPS Wall Barrier with Centrifuge Model Tests)

  • 이강일
    • 한국지반공학회논문집
    • /
    • 제22권10호
    • /
    • pp.101-110
    • /
    • 2006
  • 일반적으로 환경 지반진동은 가진원과 지반내 전달, 수신부라는 전파경로를 통해 목적지에 전달된다. 그중에서도 지반내 파동의 전달은 전파의 방식이 각 지반의 특성에 따라 의존하고 있기 때문에 매우 복잡하다. 또한 이러한 전파를 효율적으로 차단하기 위해 최근 현장에서 가장 많이 적용하고 있는 공법은 방진벽이다. 그러나 이러한 방진벽 공법은 다양한 변수와 연관되어 방진효과에 영향을 미치지만 그중에서도 방진벽 재료의 선택이 가장 중요하다. 따라서 본 연구는 지표면에 충격하중이 가해졌을 경우 지반내 전달되는 전파경로를 효율적으로 차단할 수 있는 방진벽 재료인 EPS차단벽 재료에 대하여 원심모형실험을 통해 연구하였다. 이를 위하여 차단벽의 형상은 원통형과 직사각형 타입을 적용하였고 원통형 타입은 차단벽재의 타설심도를, 직사각형타입은 차단벽의 길이를 변화시키는 실험을 실시하여 이들의 차이가 방진효과에 미치는 영향에 대하여 연구하였다.

소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험 (Acoustic test of the payload fairing of Korea satellite launch vehicle)

  • 박순홍;서상현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF

계단식 발파에 있어서 자유면 전.후방의 지반진동에 관한 연구 (A Study on the Ground Vibration of the Front and the Back Direction of the Free Face in the Bench Blasting)

  • 기경철;김일중
    • 화약ㆍ발파
    • /
    • 제20권2호
    • /
    • pp.21-31
    • /
    • 2002
  • We did bench blasting upon the natural rock which it's uniaxial compressive strength was about $1,420~1,476kgf/\textrm{cm}^2$. This is the results we inferred after measuring, analyzing the ground vibration velocity of the front and back direction from the free face of the bench blasting. We have to induce the square and cube root scaled equation and the general equation to guarantee confidence upon the data when analyzing the measurement data of the test blasting. The variable distance is in reverse proportion to the permitted ground vibration velocity. The shorter is the exploding point to a protection structure, the bigger is the reflection that the direction of the free face experts the ground vibration velocity, The ground vibration velocity front of the free face tends become reduced about 38~46% compare with back of the free face in the range that the permitted ground vibration velocity is 2.0~5.0mm/sec. In case of 2.0mm/sec, when a protection structure is within about 95m, the max. allowable charge weight per delay on positing front of the free face can be more used about 2.61 times than that on positing back of the free face, in case of 3.0mm/sec within about 78m more about 2.38 times, in case of 5.0mm/sec within 60m more about 2.10 times. In case of 2.0~5.0mm/sec when a protection structure is within about 200m front from the free face, the max. allowable charge weight per delay can become about 1.52 times than the case on back to the free face.

Analysis of dynamic behavior for truss cable structures

  • Zhang, Wen-Fu;Liu, Ying-Chun;Ji, Jing;Teng, Zhen-Chao
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.117-133
    • /
    • 2014
  • Natural vibration of truss cable structures is analyzed based upon the general structural analysis software ANSYS, energy variational method and Rayleigh method, the calculated results of three methods are compared, from which the characteristics of free-vibration are obtained. Moreover, vertical seismic response analysis of truss cable structures is carried out via time-history method. Introducing three natural earthquake waves calculated the results including time-history curve of vertical maximal displacement, time-history curve of maximal internal force. Variation curve of maximal displacement of node along span, and variation curve of maximal internal force of member along span are presented. The results show the formulas of frequencies for truss cable structures obtained by energy variational method are of high accuracy. Furthermore, the maximal displacement and the maximal internal force occur near the 1/5 span point. These provide convenient and simple design method for practical engineering.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

Numerical and experimental verifications on damping identification with model updating and vibration monitoring data

  • Li, Jun;Hao, Hong;Fan, Gao;Ni, Pinghe;Wang, Xiangyu;Wu, Changzhi;Lee, Jae-Myung;Jung, Kwang-Hyo
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.127-137
    • /
    • 2017
  • Identification of damping characteristics is of significant importance for dynamic response analysis and condition assessment of structural systems. Damping is associated with the behavior of the energy dissipation mechanism. Identification of damping ratios based on the sensitivity of dynamic responses and the model updating technique is investigated with numerical and experimental investigations. The effectiveness and performance of using the sensitivity-based model updating method and vibration monitoring data for damping ratios identification are investigated. Numerical studies on a three-dimensional truss bridge model are conducted to verify the effectiveness of the proposed approach. Measurement noise effect and the initial finite element modelling errors are considered. The results demonstrate that the damping ratio identification with the proposed approach is not sensitive to the noise effect but could be affected significantly by the modelling errors. Experimental studies on a steel planar frame structure are conducted. The robustness and performance of the proposed damping identification approach are investigated with real measured vibration data. The results demonstrate that the proposed approach has a decent and reliable performance to identify the damping ratios.